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Introduction

After the overwhelming clinical success of targeting hematological malignancies with

CAR-T cells (1), the first signals of treatment are seen for solid tumors targeted by

engineered immune cells (2). However, targeting solid tumors with this kind of

immunotherapy still remains a challenge (3, 4). There are multiple mechanisms that

make it difficult for adoptive cellular therapies to effectively target solid tumors.

First, most solid tumors lack homogeneous expression of a tumor-specific antigen

making it difficult to find appropriate receptors to target them (5). The selection of

targetable tumor antigens needs careful consideration to avoid targeting of healthy tissue,

especially when considering engineered cellular therapies against solid cancers, where

potent and safe antigens are rare (6). Additionally, the microenvironment of solid tumors

holds unique features such as expression of immunosuppressive molecules and hypoxia

that have a huge impact on T cell fitness (4, 7, 8). Finally, a combination of extracellular

matrix deposition and anti-inflammatory signals, like attracting mesenchymal derived

suppressor cells (MDSCs), prevent effective infiltration of T cells towards the tumor site (9).

In this article we will further discuss the roadblocks facing successful implementation

of T cell therapies for the treatment of solid malignancies focusing on gdT cells and their

receptors since they provide a new avenue to target novel tumor antigens. Characterization

of these cells and their receptors holds the potential to generate novel strategies for

targeting cancer and provide new engineering strategies to potentially overcome

these hurdles.
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Gamma delta T cells as source of
novel tumor-targeting receptors

The infiltration of gdT cell in tumors has been associated in

many studies to have a favorable impact on patient survival (10–16),

while some other studies made in murine models report that

interleukin-17 (IL-17) producing gdT cells are tumor promoting

(17, 18). While these data are very insightful, it has to be carefully

handled when translating it to human clinical practices given that

human and mouse gdT cell repertoires and functions are not fully

compatible. Regardless of the ultimate effector function, activation

of gdT cells is contingent upon the engagement of their surface

receptors with antigens on the tumor cell. gd T cells can be divided

into two groups, Vd2+ and Vd2-, with Vd1 forming the majority of

Vd2- T-cells. Vd2- T cells are predominantly found in peripheral

tissue and have also been shown to be enriched in carcinomas (11,

19–21). Multiple studies reported a correlating favorable clinical

outcome either with the presence of Vd2- T-cells (12, 13) or with
gdT in general (13). This tissue-association might be advantageous

for targeting and infiltrating solid tumors when using Vd1TCR T

cells as effector cells. Vd2- TCRs can recognize a wide variety of

ligands that are expressed on infected and malignant cells (22). A

large number of studies have shown that numerous Vd2- TCRs can
recognize nonpolymorphic MHC I-like molecules MR1 and CD1

(23, 24). Most CD1 isoforms, CD1a, CD1b, and CD1c, are mainly

found on cells of hematological origin and declassify them as

potential ligands for solid tumors (25), but both MR1 as CD1d

have been found to be expressed on solid tumors (25, 26). Other

gdTCR ligands expressed on solid tumors and are recognized by

specific Vd2- TCR clones are endothelial protein C receptor (EPCR)

(27), Annexin A2 (28), and EphA2 (29). Based on the wide breath of

ligands recognized by Vd2- TCRs (22), it is to be expected that many

more ligands for this subset will be identified in the future. While

many of these Vd2- TCR ligands are also expressed on the surface

healthy cells, such as EPCR on endothelial cells (30) and CD1d on

APCs (31), no major safety concerns have been reported. For

example, a study demonstrating that while an EPCR reactive Vd2-

TCR clone recognized cytomegalovirus (CMV)-infected or

malignant endothelial cells it was not reactive against normal

endothelial cells, due to increased expression of immune

modulating molecules such as CD54 and CD58 (27).

Additionally, to avoid toxicity towards healthy, antigen presenting

cells (APCs), lipid-specific CD1d reactive Vd2- TCRs can be

used (32).

Unlike above discussed Vd2- T cells, Vd2+ T cells, also referred

as Vg9Vd2 T cells are mainly present in blood and their role of

cancer immune surveillance have been studied the most among all

gdT cells (33). The process of identifying the ligand complex for the

invariant Vg9Vd2 TCRs has been a long and winding path, that

started with the identification of phosphoantigens (34) that are

bound by the intracellular domain of butrophylin 3A1 (BTN3A1)

(35). This process leads to a re-localization of BTN3A1 to the cell

surface (36, 37), where it can form a complex with BTN2A1 (38–

40). Only when this phosphoantigen driven complex of BTN3A1

and BTN2A1 is formed on the plasma membrane, Vg9Vd2 TCRs
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can be activated. This multistep ligand complex formation serves a

safety threshold that prevents Vg9Vd2 TCR mediated toxicity

towards healthy tissue but enables the eradication of tumors in

many preclinical models (41–43).

While gdT cells have their natural potential to target cancer, as

described above, the most clinical trials to date, that have assessed

the efficacy and safety of gdT cells as adoptive cellular therapy did

show moderate clinical efficacy (44–47) where only incidentally e.g.

prolonged survival of patients has been reported (46). However, the

potential of natural, tumor infiltrating gdT cells has recently been

demonstrated in colorectal cancer (10) and kidney cancer (16),

supporting the idea to further investigate the details of receptors

present on gdT cells for the treatment of cancer. While providing an

emerging universe of tumor specific receptors, one has to carefully

assess possible toxicity against healthy tissues in advanced 3-

dimensional preclinical models (41, 42, 48) that resemble the

homeostatic environment of the human body.
Improving T-cell fitness for durable
tumor control

T cell dysfunction has been one of the major causes of failure of

CAR-T cell treatments as it results in poor T cell expansion and

short-term persistence resulting in reduced anti-tumor efficacy (8,

49). Despite efforts to improve CAR designs, CAR-T cell exhaustion

remains one of the main limitations of this kind of therapy (50–52).

Thus, although CAR-T field has significantly growth in the last years,

some studies advocate for the use of natural TCR signaling to reduce

exhaustion of T cells (53, 54). The main reason for this is that CAR’s

artificial design accelerates exhaustion of T cells when compared to

TCR based therapies, mostly due to the described tonic signaling in

the absence of antigen (54–56). In this line, several designs have been

explored to make CAR more TCR-like, such as HLA-independent

TCR (HIT) or synthetic TCR and antigen receptor (STAR) (57, 58).

The CAR scFv sequence in these receptors is fused to the constant

domains of an abTCR, thereby preserving TCR signaling while using

the CAR’s ability to recognize tumors in an HLA independent way.

An elegant alternative to these designs is engineering ab T cells to

express tumor-reactive Vg9Vd2 TCRs (called TEGs) (41, 59). In this

way, the use of gdTCRs in T cell therapy appear to be advantageous

when compared with CARs or abTCRs, as they supply T cells with

natural TCR signaling while preserving the ability of recognize

tumors in an HLA-independent way (44).

Optimal co-stimulation has been described as key to overcome

exhaustion and improve T cell fitness and persistence in the context

of cancer (60–62). Therefore, as costimulatory signals are highly

involved in T cell metabolic reprogramming (63, 64) and T cell

exhaustion is closely related with metabolic dysfunction,

manipulation of co-stimulation in T cell therapies will result in

improved metabolic T cell fitness, which is key to achieve robust

anti-tumor responses (63). One example is the addition of co-

stimulatory domains to the first generation of CARs, which has

shown to improve persistence of these cells (65, 66). This led to the

development of second and third generation of CARs with
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improved proliferation ability. Therefore, combining natural

TCR signaling properties, by using gdTCRs to target tumors,

with improved co-stimulation might be the answer to CAR-

T limitations.

One way to improve the co-stimulation of T cells can be

achieved by expressing chimeric costimulatory receptors (CCRs)

in combination with a CAR or a TCR (67–70). These receptors

preserve the structure of conventional second-generation CARs but

lack the CD3z domain, therefore providing only costimulatory

signals to the T cell. Uncoupling of signal 1 (CD3 signal) and

signal 2 (co-stimulation) by this dual targeting has been shown to be

beneficial (71–73) as T cells will only activate once synergistic

signals are delivered upon encounter of both antigens. While these

receptors improve T cell proliferation, they also reduce exhaustion

(71) thereby improving T cell persistence in the tumor niche and

leading to an improved therapeutic effect (71, 74).

A type of CCRs are the so-called switch chimeric co-receptors

(75–78), which use the extracellular domain of a described

inhibitory receptor (such as PD-1 or TIGIT) and link it to the

intracellular domain of activating costimulatory receptors (such as

CD28 or 4-1BB) or eventually DAP10, when expressed in gdT cells

(70). Thus, these receptors turn inhibitory signals, that would

normally induce exhaustion of T cells, into activating signals.

This strategy improves not only T cell fitness, by improving co-

stimulation, but also makes engineered T cells resistant to tumor

microenvironment immunosuppressive factors.

Finally, it is important to further investigate the mechanisms

that impact T cell fitness as not all the T cells subsets respond equal

to the same stimulus. For example, TGF-b has been shown to

improve cytotoxic activity of Vd2+ T cells (79) while it is been

described to suppress ab T cells function (80). Furthermore, IL-15

has been shown to improve tumor killing capacity of gdT cells

isolated from AML patients (81). Therefore, comprehensive studies

and rational engineering it is key to develop effective therapies. In

conclusion, to achieve durable anti-tumor responses the next

generation of T cell-based immunotherapies should include fine-

tuning of co-stimulation, to preserve T cell fitness, ensure

persistence, and skew the T cells to the most potent phenotype.
Tackling the tumor microenvironment

The lack of efficacy observed for different T cell treatments

targeting various antigens in solid tumors suggest the presence of

general barriers that inhibit the efficacy of these immunotherapies.

The cellular and extra-cellular composition of the tumor

microenvironment can influence the tumor biology and response

to immune therapy (82). The dense extracellular matrix (ECM) of

solid tumors is a physical barrier for T cells to penetrate leading

to low numbers of infiltrating, endogenous T cells in solid tumors

(4). Meanwhile, immunosuppressive cells such as myeloid-

derived suppressive cells and regulatory T cells in the tumor

microenvironment (TME) inhibit antitumor activity of T cells

that do infiltrate in the TME (83). Different engineering strategies

are being developed to overcome these general barriers of T-cell

therapies in solid malignancies.
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Modulation of the chemokine signaling of the tumor-reactive T

cells can lead to improved T cell infiltration by increasing

chemotaxis towards the tumor site. For example, expression of

the colony stimulating factor receptor (CSF-R) in CAR-T cells

improved migration towards solid tumor models producing CSF

(84). Arming T cells with other chemokine receptors have shown

similar results where CCR4, CCR2b and CXCR3 overexpression in

the T cell products led to increased infiltration in the TME and

thereby increased tumor targeting (85–87).

Upon infiltration of immune cells in the TME, multiple

mechanisms can render the T cells inactive via expression of

immunosuppressive molecules. Well-known checkpoint molecules

such as PD-1 and TIM3 are not only affecting ab T cells but also act

on gd T cells as has been recently shown (10) in colorectal cancer.

However, gd T cells are also often regulated by unique sets of

inhibitory natural killer (NK) receptors: for example, tumor and

stromal cells can express ligands for immune checkpoints in T cells

like HLA-E binding NKG2A on gd tumor infiltrating lymphocytes

(TILs) (88). To overcome this, numerous cytokines have been tested

to make armed CAR-T cells also known as T cell redirected for

antigen-unrestricted cytokine-initiated killing (TRUCKs) (89).

CAR-T cells targeting different solid tumor models were shown to

improve their anti-tumor activity, increase their resistance to

regulatory T cell signaling and improve local proliferation upon

arming the T cells with IL-12 expression (90–92). Expression of

other cytokines such as IL-7, IL-15 and IL-18 have shown to provide

similar results by increasing therapy efficacy via increasing local

inflammation in the TME (92–94). Chemokine and cytokine

arming of gdTCR based T cell therapies could increase efficacy

since other T cell engineering approaches for CAR-T cells.

Additionally, CAR-T cells can be engineered to express ECM-

modifying enzymes to facilitate better penetration to the tumor site.

Heparinase expressing GD2 CAR-T cells improved their infiltrating

capacity in solid tumor models compared to CAR-T cells lacking

heparin expression (95, 96). Arming CAR-T cell with prolyl

endopeptidase is another approach for targeting the ECM in the

TME (97). Expression of prolyl endopeptidase in CAR-T cells

improved their anti-tumor activity, however some toxicity

towards healthy tissue was observed with both ECM targeting

approaches. Introducing these types of modifications could be

very promising for improving the therapeutic effect of gdTCR T

cells in solid tumors.
Future perspectives

Current developments in the field of engineered adoptive

cellular therapies, especially CAR-T cell therapies show promising

results in the treatment of haematological malignancies; more

specifically B cell-derived tumors. However, adapting these T cells

therapies to solid tumor treatments options requires overcoming

certain impediments posed by solid malignancies and their TME

(Figure 1). Fortunately, these T cells-based therapies allow for ex

vivo modifications of the treatment to address these tumor-specific

challenges posed in the TME of solid tumors where lesson learned

from tumor specific gdT may provide a possible solution.
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Selection of the tumor-reactive receptor and the tumor specific/

associated antigen remains the first important step in optimizing T cell

therapies in solid tumors. To this end, gdTCRs are an interesting option
due to their unique recognition patterns. Secondly, the addition of a co-

stimulatory signal, especially in combination with a naturally low

affinity gdTCR can help improve T cell fitness via either one of the

three suggested signalling approaches. Expressing a chimeric

costimulatory receptor to mimic signal 2 will help the T cells to retain

their anti-tumor activity upon prolonged exposure in the TME.

Furthermore, the induction of inflammation via secretion of cytokines

such as at the tumor site can help the tumor infiltrating gdTCR T cells to

overcome the immunosuppressive signals present in the TME. Finally,

expression of chemokine(receptors) or ECM modifying molecules can

help increase T cell infiltration in the solid tumor microenvironment.

In conclusion, promising approaches for improving the efficacy

and scope of T cell therapies are being developed to overcome the

current roadblocks in the treatment of solid malignancies. Using

gdTCRs as tumor-reactive receptors, and combining these with

appropriate co-stimulation via expression of additional chimeric

costimulatory receptor to improve fitness and providing additional

mechanisms to improve gdTCR T-cell infiltration like boosting

chemotaxis, will be key assets to enhance efficacy of T cell therapies

for solid malignancies. While further modifying the T cells does
Frontiers in Immunology 04
contain risks, these solutions will help to optimize efficacy of

engineered T cell therapies and introduce this technology for a

more widespread use in anticancer therapy.
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FIGURE 1

Schematic representation of T-cell engineering approaches. Biological mechanisms that prevent effective adoption of gd T-cell therapies for the
treatment of solid malignancies and suggested engineering strategies to overcome these hurdles are shown.
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