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A B S T R A C T   

Research in the field of local and locoregional breast cancer radiotherapy aims to maintain excellent oncological 
outcomes while reducing treatment-related toxicity. Adaptive radiotherapy (ART) considers variations in target 
and organs at risk (OARs) anatomy occurring during the treatment course and integrates these in re-optimized 
treatment plans. Exploiting ART routinely in clinic may result in smaller target volumes and better OAR sparing, 
which may lead to reduction of acute as well as late toxicities. In this review MR-guided and CT-guided ART for 
breast cancer patients according to different clinical scenarios (neoadjuvant and adjuvant partial breast irradi-
ation, whole breast, chest wall and regional nodal irradiation) are reviewed and their advantages as well as 
challenging aspects discussed.   

Introduction 

Breast cancer is the most common cancer among women, with over 
350.000 new cases in Europe in 2020 and an incidence of more than 140 
per 100.000 [1]. Patients diagnosed with early stage breast cancers have 
a very favourable prognosis with overall survival rates of 98 % for stage I 
and 92 % for stage II, while three quarters of patients diagnosed with 
stage III are still alive at 5 years [2]. Real-world data report that 63 % of 
patients diagnosed with local or loco-regional breast cancer receive 
breast conserving surgery and 37 % undergo mastectomy [3]. As 
radiotherapy is a standard treatment in the breast conserving approach 
and a possible indication according to risk factors after mastectomy, 
most breast cancer patients receive radiotherapy as part of their curative 
treatment. The number of patients affected by breast cancer needing 

radiotherapy is expected to increase by 10 % from 2012 to 2025 in 
Europe [4]. 

Besides improving oncological outcomes, developments in radio-
therapy aim to reduce acute and long-term toxicities, the latter being 
particularly important for breast cancer patients, given the high rate of 
curability. Adaptive radiotherapy (ART) intends to adjust the treatment 
through a re-optimization of the radiation plan taking into account 
variations occurring during the therapy course, such as changes in pa-
tients‘ anatomy, organs at risk (OARs) or treatment target [5]. This has 
been shown to improve both target coverage and OAR sparing for 
treatments in the abdominal region, pelvis, lung and head and neck [6] 
and might allow dose escalation strategies. 

External radiotherapy for breast cancer is usually performed over 3 
to 6 weeks, whereas new data suggest that five fractions administered 
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over one week might become the new standard [7]. Before irradiation, 
portal images or cone beam CTs are acquired and used to correct vari-
ations in patient positioning. These image guidance methods cannot 
correct for interfraction variability such as changes in the breast (e.g. 
swelling, seroma modifications), a different breathing pattern compared 
to the planning CT or a different arm position. Additionally, intrafrac-
tional target motion has also been described [8–10]. Therefore, safety 
margins of one cm or more are used to compensate and avoid missing the 
target. For breast cancers, ART might allow margin reduction and might 
consequently reduce the volume of lung, heart and chest wall muscu-
lature being irradiated. In addition, when performing partial breast 
irradiation (PBI), it will facilitate volume reduction of healthy breast 
tissue irradiated. Since the curve of the dose–response for late normal 
tissue effects for the breast is very steep [11] even a small reduction of 
the dose to the breast tissue might favourably affect late toxicities and 
cosmetic outcomes [7]. Regarding the heart, data showed that the rate of 
major coronary events increases linearly with the mean heart dose by 
7.4 % per Gray [12] and might even reach 19 % per Gray [13]. The 
incidence of clinically relevant radiation-induced lung injury (pneu-
monitis, fibrosis) after breast irradiation has lowered over time, with 
recent data indicating rates of 2–3 %, especially when hypofractionated 
regimens as well as new techniques are used [14]. Besides breast, heart 
and lung toxicity, additional concerns when treating breast cancer pa-
tients are represented by secondary radiation-induced cancers. For 
breast cancer patients, Surveillance, Epidemiology, and End Results 
(SEER) data analysis reported an absolute excess risk for a second cancer 
of 35 per 10,000 patient-years for irradiated patients compared to 23 for 
non-irradiated patients [15]. Considering these data and that long-term 
toxicities have no dose threshold, ART represents a potential benefit for 
breast cancer patients. In this review, we will discuss MR- and CT-based 
ART for breast cancer patients in distinct clinical scenarios, reviewing 
advantages as well as challenges in each. 

MR-based ART 

Adjuvant PBI 

In the context of PBI, a correct target visualization is essential. 
Compared to CT images, MR offers superior soft tissue contrast. In the 
adjuvant setting, MR might allow better visualization of the tumor bed, 
namely the postoperative breast tissue changes and the seroma, which 
appears bright on T2W sequences (Fig. 1). This is particularly important 
when the resection cavity has no distinct margins (score 2–3, Cavity 
visualization score [16]), or no cavity can be recognized (score 1) such 
that it is difficult to correctly delineate the tumor bed on CT images [17]. 
MR has been shown in different studies to be superior to CT for clearer 
visualization of post-lumpectomy changes, diminishing interobserver 

contouring variability and improving clinical target volume (CTV) 
delineation accuracy [18,19], also allowing for smaller CTVs [20,21]. 
Nevertheless, no benefit by adding MR in terms of consistency of target 
delineation has been described [21–23] and some studies showed that 
the CTVs based on MR might be even larger than those based on CT 
images, mostly because postoperative breast tissue changes visible on 
MR imaging could not be recognized on CT images [24,25]. Therefore, 
even if MR appears helpful in defining the adjuvant target volumes when 
no clear resection cavity (i.e. non-visible seroma, clips not present) is 
present, published data are conflicting and the general value of an MR- 
based CTV definition remains nowadays controversial. 

MR-based ART might allow for smaller planning target volumes 
(PTVs). PTV margins up to 10 mm have been calculated as being 
necessary to take into account variations in tumor bed position during 
fractionated radiotherapy [26]. These might be reduced when a daily 
plan adaptation is performed [27]. A PTV margin reduction might be 
particularly attractive when oncoplastic surgery has been performed 
following which the CTV is frequently larger than it would be without 
oncoplastic surgery, because part of the breast gland has been mobilized 
leading to tissue that was adjacent to the cancer becoming more widely 
displaced. Another scenario where a daily MR-based plan adaptation 
might offer advantages is when a seroma cavity is present. Seroma can 
be well identified on MR, especially in the T2W sequences, while it is 
rather difficult to recognize it on cone beam CT images (Fig. 2). A 
shrinkage of the excision cavity volume of more than 60 % mainly due to 
reduction of the seroma has been observed [28] and dosimetric advan-
tages of a plan adaptation around the middle of the treatment course 
have been described [29]. Seroma changes are less relevant when 
applying highly hypofractionated schedules, while are expected to be 
more important during fractionated RT courses and treatment time of 
3–5 weeks. In these cases, off-line MR-based plan adaption i.e. in the 
middle of the treatment course or weekly might help in reducing PTV 
margins used to account for interfractional variability. 

With the aim of adopting MR for treatment planning and image 
guidance for treatment delivery, hybrid machines combining an MR 
scanner with a linear accelerator (MR-Linac) have become commercially 
available (Unity, Elekta AB, Stockholm, Sweden, and MRdian, ViewRay, 
Oakwood Village, OH). These systems offer MR-based image-guided 
radiotherapy (IGRT) including online daily MR-based plan adaptation 
[30,31]. The first MR-guided adjuvant PBI treatments have been per-
formed in low field MR machines coupled with 60Co sources. Here, no 
additional margins for the PTV were used, minimal intrafraction motion 
of the tumor bed was observed [32] and a seroma reduction was 
documented through repeated MR scanning during the course of 
radiotherapy [33], suggesting MR as an optimal imaging modality for 
ART in the adjuvant PBI setting. More recently, MR-guided adjuvant PBI 
at the 0.35 T (MRdian, ViewRay) [34,35] and 1.5 T MR-Linac (Unity, 

Fig. 1. A: Planning CT: clip is bright and visible, whereas seroma can hardly be recognized. B: Planning MR T2W sequence: clip is visible as signal void, seroma is 
bright, can be distinguished from the rest of the gland and pectoral muscle. 
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Elekta) [36,37] have been successfully delivered. Treatments could be 
performed in a short time, with daily plan adaptation taking on average 
four minutes and a cumulative in-room time of 25 min [36]. 

When treating on an MR-Linac, due to the Lorentz force, the inter-
action of secondary electrons with the magnetic field is responsible for 
the electron stream effect (ESE) and the electron return effect (ERE). For 
breast cancer patients, the ESE might cause out-of-field dose deposition 
the patientś chin [34,38], and ERE in-field dose deposition on the lung/ 
chest wall and on patientś skin (air/tissue interfaces) [39–44]. These 
effects were investigated in the low-field [34] as well as high field MR- 
Linac [36,37]. It was demonstrated that: 1) ESE and ERE can be accu-
rately calculated by dedicated Monte Carlo based dose simulation al-
gorithms (i.e. the treatment planning system Monaco 5.4 (Elekta AB, 
Stockholm, Sweden, [36,37]), 2) for laterally located targets the ESE is 
directed to both the ipsilateral arm and the patientś chin [36], and 3) the 
dose due to the ESE is effectively minimized using a 1 cm bolus 
[34,36,37]. Of note, the increase in the maximal dose to the skin due to 
the ERE was reported to be less than 1 % of the prescribed dose [37] and 
no relevant acute nor early late toxicity was observed, with good or 
excellent cosmetic outcomes [36]. Next to ESE and ERE, another chal-
lenging aspect for treatments at the MR-Linac is the geometric distortion 
[45]. The clinical impact of the geometric distortion is still unknown, 
but as the extent of distortions increases with the distance from the 
isocenter (up to 2 mm for distances of greater than 17 cm, both for the 
1.5 T and the 0.35 T systems [46,47]), for breast cancer patients it 
should be taken into account for very laterally located targets. 

Several studies for adjuvant PBI at the MR-linac are recruiting, either 
as breast dedicated trials or as part of umbrella studies for the treatment 
of different tumor entities, including breast [48–51]. 

In summary, through a superior soft tissue contrast compared to CT, 
MR appears to allow for a more accurate delineation of the CTV in the 
adjuvant PBI setting, even if its additional value compared to CT-based 
breast target contouring is still controversial. Additionally, the 

possibility of daily MR-based online plan adaptation might be exploited 
to reduce margins for the PTV. Adjuvant PBI at the MR-Linacs has been 
successfully performed, with promising early results and more studies 
are opened for recruitment. 

Neoadjuvant PBI 

In recent years, interest in neoadjuvant radiotherapy has rapidly 
grown, and studies have started recruiting patients with the goal of 
either facilitating PBI or delaying or avoiding surgery for low-risk breast 
cancers or allowing tumor downstaging for breast conserving surgery in 
patients with more advanced tumor stages [52–56]. Most of the benefits 
of MR-guided radiotherapy are expected in the neoadjuvant setting, for 
which precise visualization of the gross tumor volume (GTV) is essential 
and relatively difficult on CT images, especially when performed 
without contrast enhancement. A more accurate target delineation with 
less inter-observer variability has been shown in the neoadjuvant PBI 
setting compared to adjuvant PBI [57]. For preoperative target volume 
delineation, MR has been proven to be superior to CT for visualization of 
the tumor [58], and consensus guidelines for target delineation on MR 
images for neoadjuvant PBI are available [59]. During treatment de-
livery, interfraction and intrafraction target position variability must be 
carefully considered. Neoadjuvant PBI protocols usually deliver treat-
ment in one or very few fractions. In these cases, intrafraction variability 
will not be compensated in subsequent fractions. In addition, the dura-
tion of each fraction increases, such that intrafraction monitoring of 
target motion is particularly important [60]. For breast cancers, intra-
fractional tumor displacement of up to 4 mm has been documented on 
cine MR [10]. Importantly, the MR-linac allows for imaging during ra-
diation dose delivery, with the advantage of being able to monitor both 
tumor and OAR motion. Moreover, small margins for the PTV are 
necessary to minimize toxicity for highly hypofractionated stereotactic 
neoadjuvant treatments. Small margins, in turn, are possible when the 

Fig. 2. A: Daily MR acquired before treatment plan adaptation and treatment delivery at the 1.5 T MR-linac, T2W sequence. The seroma can be exactly recognized as 
well as the breast tissue. B: On daily cone beam CT acquired before treatment delivery, neither the breast tissue nor the seroma can be recognized. C: Matching 
between planning CT and daily MR is accurate (in A and C the same patient is displayed, in B a different patient is displayed). 
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target is clearly visible during the entire procedure. Therefore, treat-
ments on MR-linacs appear to offer advantages compared to conven-
tional linacs when performing neoadjuvant PBI and suggestions for 
protocol optimization when performing MR-guided breast cancer 
treatments are available [61]. Preparatory planning studies for MR-linac 
based neoadjuvant PBI showed promising results [62] and new pro-
tocols for fractionated or single-dose neoadjuvant PBI at MR-linacs are 
open [63–65]. These studies might also support translational research in 
breast cancer, facilitating a better understanding of tumor response to 
radiation [66]. 

For dose calculation an electron density map is needed, which is only 
available on CT. Therefore, at present in the clinical routine, for MR- 
based ART a planning CT is still employed to calculate the reference 
plan and match with the daily MR for MR-based plan adaptation. To 
overcome this methodological shortcoming, various approaches for 
generation of synthetic CTs from MRs are under development and 
clinical validation [67–69]. An MR-only workflow is expected to reduce 
geometrical uncertainties resulting from CT-MR matching and to be 
more efficient as well as more cost-effective [70]. Additionally, in order 
to speed up the adaptation procedure, autonomous un-supervised 
treatment planning systems have been developed and have been 
shown to be clinically feasible [71]. 

In summary, neoadjuvant PBI indications are rapidly growing, and 
MR has been shown superior to CT for target visualization. To date, no 
clinical experiences of MR-guided online ART in the neoadjuvant setting 
has been published but protocols have been designed and studies are 
recruiting. Thus, in the coming years data about feasibility and advan-
tages of MR-based ART in this setting are expected. 

CT-based ART 

During fractionated adjuvant breast or chest wall irradiation with or 
without targeting lymphatics, anatomical variations of the target and 
OARs may occur. They mainly result from changes in the irradiated 
breast, i.e., swelling and seroma modification, variations in the arm 
position as well as in the position of the heart with respect to the target 

according to the breathing pattern (Fig. 3). Without the possibility of 
online plan adaptation, margins of 10 mm or more may be required to 
cover for intrafraction and interfraction variability. In fact, variation in 
the tumor bed position may require margins up to 10 mm [26]. Varia-
tion in the position of the heart up to 10 mm in both directions (towards 
and away from the breast/ chest wall) has been described [72]. Simi-
larly, variability in the arm position has been investigated and margins 
up to 10 mm appear to be needed to account for it [73,74]. ART might 
offer the possibility to personalize the treatment, reducing PTV margins 
and treatment-related toxicities. Significant changes of seroma and/ or 
lumpectomy cavity volume CT-documented during the radiotherapy 
course have been described my many authors [28,29,75–82]. In patients 
planned for radiotherapy few weeks after surgery and with larger 
seromas and/or lumpectomy cavity, ART through re-planning CT per-
formed after 2 weeks of radiotherapy enabled a significant reduction of 
the boost volume [78]. Recently, Lezzi et al considered a total of 75 
applied fractions on 5 right-sided breast cancer patients treated with 
40.05 Gy in 15 fractions at Ethos (Varian Medical Systems, Palo Alto, 
CA), without online adaptation [83]. Applying the original plan after 
off-line rigid registration between the daily CBCT and the planning CT, 
showed a in 4 fractions a suboptimal but still acceptable target volume 
coverage and an unacceptable target coverage in 3 fractions. In this 
study, patients with larger CTVs were those who showed more often 
under-coverage problems, being therefore those who might benefit the 
most by an adaptive approach. Based on the current available literature, 
it appears that patients with larger breast target volumes and boost 
volumes might benefit the most from ART. Here it should be noticed that 
significant seroma changes, influencing the boost volume, are more 
prone to occur in patients treated with conventional fractionation or 
light hypofractionation, which nowadays are being slowly replaced by 
highly hypofractionated schedules. Still, the application of high frac-
tional doses suggests a potential benefit of ART, particularly when 
highly hypofractionated schedules are applied to larger volumes and to 
targets closed to critical structures, i.e. including lymph nodes regions 
and/ or left-sided tumours. Here, higher fractional doses to organs at risk 
such as heart, lung and brachial plexus are relevant especially for late 

Fig. 3. Changes of the heart position during radiotherapy for left sided breast cancer. In purple the planning CT (reference), in green the CBCT. Structures displayed: 
CTV breast, PTV breast, CTV boost (tumor bed), PTV boost, contralateral breast, heart, left ventricle, thoracic aorta. A: Fraction 6. B: Fraction 10. 
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toxicity. Nevertheless, despite the above-described single center obser-
vations and multiple efforts to establish standardized criteria to patients 
for ART [83,84], it remains very often a clinical decision based on CBCT 
if, when and how often a patient should undergo replanning. 

At the moment, plan adaptation for treatments at conventional linac 
requires a new planning CT, new target and OARs delineation and the 
generation of a completely new plan. This process is labor intensive and 
resource demanding, such that in clinical practice as a pragmatic 
approach large PTV margins are used to account for interfraction and 
intrafraction variability. 

Novel technologies based on artificial intelligence (AI) are being 
investigated for their potential application to enable ART based on CBCT 
[85]. Here, a synthetic CT based on the CBCT is generated and automatic 
contouring procedures of target and OARs based on rigid and deform-
able registration with the planning CT are applied. Then, the adapted 
plan is calculated, verified and finally delivered. For breast cancers, 
programs for AI-based fast synthetic CT generation have been success-
fully implemented [86] and deep-learning systems for auto- 
segmentation for OARs delineation have been described [87–90]. To 
allow for a quick procedure for off-line but also potentially on-line plan 
adaptation, AI-based methods for dose calculations are under develop-
ment [91]. Linacs with CT-based dedicated ART systems have recently 
become available on the market. These systems allow for online ART, 
which, others than offline, enables treatment on a new plan on the same 
day. The Varian Ethos system (Varian Medical Systems, Palo Alto, CA) 
has been clinically implemented and adaptive treatments in the pelvic 
regions with Ethos were successfully performed within 20 min [92–94]. 
To date however no CT-based ART experiences for breast cancers have 
been published, although CT-based ART for breast cancer patients is 
currently under evaluation [95]. 

Taking a broader perspective, there are currently clinical de-
velopments towards precision radiotherapy. Therapeutic decisions need 
to take into account patients clinical information as well as complex 
biological and imaging features of the tumor. AI can facilitate devel-
opment and implementation of models to predict tumor response 
[96,97]. This may allow individual treatment tailoring, including de-
cisions on radiotherapy dose and volumes [98]. For breast cancer 
radiotherapy, this might specifically have consequences for target vol-
ume delineation, dose painting, timing for re-planning and indication 
for combination with other systemic therapies [99]. In a context where 
resources for health care are limited and need to be carefully assigned, a 
reflection about the higher costs of ART is necessary. In spite of AI- 
driven processes, ART procedures remain time-consuming, at least in 
this initial phase of their clinical implementation, with consequently 
higher costs in terms of staff members employed at every level, i.e. ra-
diation therapists, physicists, clinicians. In addition, higher costs for new 
equipment and technology, especially ART-enabling radiotherapy de-
vices, i.e. MR-Linacs and CT-adaptive Linacs, need to be considered. 
With the goal to provide data for accurate cost-value analyses for new 
investments in the field of radiotherapy, the European Society for Ra-
diation Oncology (ESTRO) launched in 2010 the HERO project (Health 
Economics in Radiation Oncology) [100,101]. At a national level, the 
German Cancer Research Centre (DKFZ) established in 2017 a division 
for health economics. At present, early health economic evaluations for 
MR guided ART are available for prostate cancer [102–104] and SBRT 
[105]. These studies seem to indicate that the higher costs of performing 
MR guided ART are overcome, especially when ultra hypofractionated 
scheduled are adopted, by the reduced costs of acute and late toxicities 
management [106]. Data for breast ART health economics evaluation 
are not available yet, since complex indicators such as the burden of 
cancer with its socioeconomic impact, cost-benefit as well as cost- 
effectiveness analyses of new interventions still need to be assessed. 
Especially in the context of adjuvant breast ART, these analyses are 
particularly complex, since costs are immediately evident, while many 
years are required to assess advantages in terms of better clinical out-
comes (i.e. increased tumor control, less toxicity and better quality of 

life) and consequently potential sparing of secondary health care costs 
[107]. 

Conclusions 

ART could be of benefit to breast cancer patients in several clinical 
scenarios, particularly PBI, in which ART could minimize margins and 
thereby reduce the volume of normal tissue irradiated. Autonomous AI- 
driven technologies are expected to further enable ART in the near 
future. Initial clinical experiences are promising and numerous studies 
are currently recruiting such that further data on likely clinical benefit 
are expected in the coming years. 
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