VCA supercooling in a swine partial hindlimb model

Yanis Berkane, Irina Filz von Reiterdank, Pierre Tawa, Laura Charlès, Marion Goutard, Antonia T. Dinicu, Mehmet Toner, Nicolas Bertheuil, Aebele B. Mink van der Molen, J. Henk Coert, Alexandre G. Lellouch, Mark A. Randolph, Curtis L. Cetrulo, Korkut Uygun*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Vascularized composite allotransplantations are complex procedures with substantial functional impact on patients. Extended preservation of VCAs is of major importance in advancing this field. It would result in improved donor-recipient matching as well as the potential for ex vivo manipulation with gene and cell therapies. Moreover, it would make logistically feasible immune tolerance induction protocols through mixed chimerism. Supercooling techniques have shown promising results in multi-day liver preservation. It consists of reaching sub-zero temperatures while preventing ice formation within the graft by using various cryoprotective agents. By drastically decreasing the cell metabolism and need for oxygen and nutrients, supercooling allows extended preservation and recovery with lower ischemia–reperfusion injuries. This study is the first to demonstrate the supercooling of a large animal model of VCA. Porcine hindlimbs underwent 48 h of preservation at − 5 °C followed by recovery and normothermic machine perfusion assessment, with no issues in ice formation and favorable levels of injury markers. Our findings provide valuable preliminary results, suggesting a promising future for extended VCA preservation.

Original languageEnglish
Article number12618
Number of pages12
JournalScientific Reports
Volume14
Issue number1
DOIs
Publication statusPublished - 1 Jun 2024

Fingerprint

Dive into the research topics of 'VCA supercooling in a swine partial hindlimb model'. Together they form a unique fingerprint.

Cite this