Abstract
White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process.
Original language | English |
---|---|
Article number | 118502 |
Pages (from-to) | 1-18 |
Journal | NeuroImage |
Volume | 243 |
DOIs | |
Publication status | Published - Nov 2021 |
Keywords
- Bundle segmentation
- Dissection
- Fiber pathways
- Tractography
- White matter
- Algorithms
- Humans
- Image Processing, Computer-Assisted/methods
- Dissection/methods
- Neural Pathways/diagnostic imaging
- Diffusion Tensor Imaging/methods
- White Matter/diagnostic imaging
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset?'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: NeuroImage, Vol. 243, 118502, 11.2021, p. 1-18.
Research output: Contribution to journal › Article › Academic › peer-review
TY - JOUR
T1 - Tractography dissection variability
T2 - What happens when 42 groups dissect 14 white matter bundles on the same dataset?
AU - Schilling, Kurt G.
AU - Rheault, François
AU - Petit, Laurent
AU - Hansen, Colin B.
AU - Nath, Vishwesh
AU - Yeh, Fang Cheng
AU - Girard, Gabriel
AU - Barakovic, Muhamed
AU - Rafael-Patino, Jonathan
AU - Yu, Thomas
AU - Fischi-Gomez, Elda
AU - Pizzolato, Marco
AU - Ocampo-Pineda, Mario
AU - Schiavi, Simona
AU - Canales-Rodríguez, Erick J.
AU - Daducci, Alessandro
AU - Granziera, Cristina
AU - Innocenti, Giorgio
AU - Thiran, Jean Philippe
AU - Mancini, Laura
AU - Wastling, Stephen
AU - Cocozza, Sirio
AU - Petracca, Maria
AU - Pontillo, Giuseppe
AU - Mancini, Matteo
AU - Vos, Sjoerd B.
AU - Vakharia, Vejay N.
AU - Duncan, John S.
AU - Melero, Helena
AU - Manzanedo, Lidia
AU - Sanz-Morales, Emilio
AU - Peña-Melián, Ángel
AU - Calamante, Fernando
AU - Attyé, Arnaud
AU - Cabeen, Ryan P.
AU - Korobova, Laura
AU - Toga, Arthur W.
AU - Vijayakumari, Anupa Ambili
AU - Parker, Drew
AU - Verma, Ragini
AU - Radwan, Ahmed
AU - Sunaert, Stefan
AU - Emsell, Louise
AU - De Luca, Alberto
AU - Leemans, Alexander
AU - Bajada, Claude J.
AU - Haroon, Hamied
AU - Tax, Chantal M.W.
AU - Fernandes, Francisco Guerreiro
AU - Raemaekers, Mathijs
N1 - Funding Information: This work was conducted in part using the resources of the Advanced Computing Center for Research and Education at Vanderbilt University, Nashville, TN. KS, BL, CH were supported by the National Institutes of Health under award numbers R01EB017230, and T32EB001628, and in part by ViSE/VICTR VR3029 and the National Center for Research Resources, Grant UL1 RR024975-01. This work was also possible thanks to the support of the Institutional Research Chair in NeuroInformatics of Université de Sherbrooke, NSERC and Compute Canada (MD, FR). MP received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 754462. The Wisconsin group acknowledges the support from a core grant to the Waisman Center from the National Institute of Child Health and Human Development (IDDRC U54 HD090256). NSF OAC-1916518, NSF IIS-1912270, NSF IIS-1636893, NSF BCS-1734853, NIH NIBIB 1R01EB029272-01, and a Microsoft Faculty Fellowship to F.P. LF acknowledges the support of the Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy – EXC 2025. SW is supported by a Medical Research Council PhD Studentship UK [MR/N013913/1]. The Nottingham group's processing was performed using the University of Nottingham's Augusta HPC service and the Precision Imaging Beacon Cluster. JPA, MA and SMS acknowledges the support of FCT - Fundação para a Ciência e a Tecnologia within CINTESIS, R&D Unit (reference UID/IC/4255/2013). MM was funded by the Wellcome Trust through a Sir Henry Wellcome Postdoctoral Fellowship [213722/Z/18/Z]. EJC-R is supported by the Swiss National Science Foundation (SNSF, Ambizione grant PZ00P2 185814/1). CMWT is supported by a Sir Henry Wellcome Fellowship (215944/Z/19/Z) and a Veni grant from the Dutch Research Council (NWO) (17331). FC acknowledges the support of the National Health and Medical Research Council of Australia (APP1091593 and APP1117724) and the Australian Research Council (DP170101815). NSF OAC-1916518, NSF IIS-1912270, NSF IIS-1636893, NSF BCS-1734853, Microsoft Faculty Fellowship to F.P. D.B. was partially supported by NIH NIMH T32-MH103213 to William Hetrick (Indiana University). CL is partly supported by NIH grants P41 EB027061 and P30 NS076408 “Institutional Center Cores for Advanced Neuroimaging. JYMY received positional funding from the Royal Children's Hospital Foundation (RCH 1000). JYMY, JC, and CEK acknowledge the support of the Royal Children's Hospital Foundation, Murdoch Children's Research Institute, The University of Melbourne Department of Paediatrics, and the Victorian Government's Operational Infrastructure Support Program. C-HY is grateful to the Ministry of Science and Technology of Taiwan (MOST 109-2222-E-182-001-MY3) for the support. LC acknowledges support from CONACYT and UNAM. ARM acknowledges support from CONACYT. LJO, YR, and FZ were supported by NIH P41EB015902 and R01MH119222. AJG was supported by P41EB015898. NM was supported by R01MH119222, K24MH116366, and R01MH111917. This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 785907 & 945539 (HBP SGA2 & SGA3), and from the ANR IFOPASUBA- 19-CE45-0022-01. PG, CR, NL and AV were partially supported by ANID-Basal FB0008 and ANID-FONDECYT 1190701 grants. We would like to acknowledge John C Gore, Hiromasa Takemura, Anastasia Yendiki, and Riccardo Galbusera for their helplful suggestions regarding the analysis, figures, and discussions. Funding Information: This work was conducted in part using the resources of the Advanced Computing Center for Research and Education at Vanderbilt University, Nashville, TN. KS, BL, CH were supported by the National Institutes of Health under award numbers R01EB017230, and T32EB001628, and in part by ViSE/VICTR VR3029 and the National Center for Research Resources, Grant UL1 RR024975-01. This work was also possible thanks to the support of the Institutional Research Chair in NeuroInformatics of Universit? de Sherbrooke, NSERC and Compute Canada (MD, FR). MP received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk?odowska-Curie grant agreement No 754462. The Wisconsin group acknowledges the support from a core grant to the Waisman Center from the National Institute of Child Health and Human Development (IDDRC U54 HD090256). NSF OAC-1916518, NSF IIS-1912270, NSF IIS-1636893, NSF BCS-1734853, NIH NIBIB 1R01EB029272-01, and a Microsoft Faculty Fellowship to F.P. LF acknowledges the support of the Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany?s Excellence Strategy ? EXC 2025. SW is supported by a Medical Research Council PhD Studentship UK [MR/N013913/1]. The Nottingham group's processing was performed using the University of Nottingham's Augusta HPC service and the Precision Imaging Beacon Cluster. JPA, MA and SMS acknowledges the support of FCT - Funda??o para a Ci?ncia e a Tecnologia within CINTESIS, R&D Unit (reference UID/IC/4255/2013). MM was funded by the Wellcome Trust through a Sir Henry Wellcome Postdoctoral Fellowship [213722/Z/18/Z]. EJC-R is supported by the Swiss National Science Foundation (SNSF, Ambizione grant PZ00P2 185814/1). CMWT is supported by a Sir Henry Wellcome Fellowship (215944/Z/19/Z) and a Veni grant from the Dutch Research Council (NWO) (17331). FC acknowledges the support of the National Health and Medical Research Council of Australia (APP1091593 and APP1117724) and the Australian Research Council (DP170101815). NSF OAC-1916518, NSF IIS-1912270, NSF IIS-1636893, NSF BCS-1734853, Microsoft Faculty Fellowship to F.P. D.B. was partially supported by NIH NIMH T32-MH103213 to William Hetrick (Indiana University). CL is partly supported by NIH grants P41 EB027061 and P30 NS076408 ?Institutional Center Cores for Advanced Neuroimaging. JYMY received positional funding from the Royal Children's Hospital Foundation (RCH 1000). JYMY, JC, and CEK acknowledge the support of the Royal Children's Hospital Foundation, Murdoch Children's Research Institute, The University of Melbourne Department of Paediatrics, and the Victorian Government's Operational Infrastructure Support Program. C-HY is grateful to the Ministry of Science and Technology of Taiwan (MOST 109-2222-E-182-001-MY3) for the support. LC acknowledges support from CONACYT and UNAM. ARM acknowledges support from CONACYT. LJO, YR, and FZ were supported by NIH P41EB015902 and R01MH119222. AJG was supported by P41EB015898. NM was supported by R01MH119222, K24MH116366, and R01MH111917. This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 785907 & 945539 (HBP SGA2 & SGA3), and from the ANR IFOPASUBA- 19-CE45-0022-01. PG, CR, NL and AV were partially supported by ANID-Basal FB0008 and ANID-FONDECYT 1190701 grants. We would like to acknowledge John C Gore, Hiromasa Takemura, Anastasia Yendiki, and Riccardo Galbusera for their helplful suggestions regarding the analysis, figures, and discussions. Publisher Copyright: © 2021
PY - 2021/11
Y1 - 2021/11
N2 - White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process.
AB - White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process.
KW - Bundle segmentation
KW - Dissection
KW - Fiber pathways
KW - Tractography
KW - White matter
KW - Algorithms
KW - Humans
KW - Image Processing, Computer-Assisted/methods
KW - Dissection/methods
KW - Neural Pathways/diagnostic imaging
KW - Diffusion Tensor Imaging/methods
KW - White Matter/diagnostic imaging
UR - http://www.scopus.com/inward/record.url?scp=85113362191&partnerID=8YFLogxK
U2 - 10.1016/j.neuroimage.2021.118502
DO - 10.1016/j.neuroimage.2021.118502
M3 - Article
C2 - 34433094
AN - SCOPUS:85113362191
SN - 1053-8119
VL - 243
SP - 1
EP - 18
JO - NeuroImage
JF - NeuroImage
M1 - 118502
ER -