TY - JOUR
T1 - The unfolded protein response is activated in pretangle neurons in alzheimer's disease hippocampus
AU - Hoozemans, Jeroen J.M.
AU - Van Haastert, Elise S.
AU - Nijholt, Diana A.T.
AU - Rozemuller, Annemieke J.M.
AU - Eikelenboom, Piet
AU - Scheper, Wiep
PY - 2009/1/1
Y1 - 2009/1/1
N2 - Accumulation of misfolded proteins in the endoplasmic reticulum triggers a cellular stress response called the unfolded protein response (UPR) that protects the cell against the toxic buildup of misfolded proteins. Previously, we reported that UPR activation is increased in Alzheimer's disease (AD) patients. How the UPR relates to the pathological hallmarks of AD is still elusive. In the present study, the involvement of UPR activation in neurofibrillary degeneration in AD was investigated. Immunoreactivity for the phosphorylated UPR activation markers pancreatic ER kinase (pPERK), eukaryotic initiation factor 2α, and inositol-requiring enzyme 1α was observed in hippocampal neurons associated with granulovacuolar degeneration. The percentage of pPERK-immunoreactive neurons was increased in AD cases compared with nondemented control cases and with the Braak stage for neurofibrillary changes. Although absent from neurofibrillary tangles, pPERK immunore-activity was most abundant in neurons with diffuse localization of phosphorylated tau protein. Additional analyses showed that pPERK immunoreactivity was associated with ubiquitin and the ubiquitin binding protein p62. A strong co-occurrence of immuno-reactivity for both pPERK and glycogen synthase kinase 3β in neurons was also observed. Together, these data indicate that UPR activation in AD neurons occurs at an early stage of neurofibrillary degeneration and suggest that the prolonged activation of the UPR is involved in both tau phosphorylation and neu- rodegeneration in AD pathogenesis.
AB - Accumulation of misfolded proteins in the endoplasmic reticulum triggers a cellular stress response called the unfolded protein response (UPR) that protects the cell against the toxic buildup of misfolded proteins. Previously, we reported that UPR activation is increased in Alzheimer's disease (AD) patients. How the UPR relates to the pathological hallmarks of AD is still elusive. In the present study, the involvement of UPR activation in neurofibrillary degeneration in AD was investigated. Immunoreactivity for the phosphorylated UPR activation markers pancreatic ER kinase (pPERK), eukaryotic initiation factor 2α, and inositol-requiring enzyme 1α was observed in hippocampal neurons associated with granulovacuolar degeneration. The percentage of pPERK-immunoreactive neurons was increased in AD cases compared with nondemented control cases and with the Braak stage for neurofibrillary changes. Although absent from neurofibrillary tangles, pPERK immunore-activity was most abundant in neurons with diffuse localization of phosphorylated tau protein. Additional analyses showed that pPERK immunoreactivity was associated with ubiquitin and the ubiquitin binding protein p62. A strong co-occurrence of immuno-reactivity for both pPERK and glycogen synthase kinase 3β in neurons was also observed. Together, these data indicate that UPR activation in AD neurons occurs at an early stage of neurofibrillary degeneration and suggest that the prolonged activation of the UPR is involved in both tau phosphorylation and neu- rodegeneration in AD pathogenesis.
UR - http://www.scopus.com/inward/record.url?scp=65349093893&partnerID=8YFLogxK
U2 - 10.2353/ajpath.2009.080814
DO - 10.2353/ajpath.2009.080814
M3 - Article
C2 - 19264902
AN - SCOPUS:65349093893
SN - 0002-9440
VL - 174
SP - 1241
EP - 1251
JO - American Journal of Pathology
JF - American Journal of Pathology
IS - 4
ER -