TY - JOUR
T1 - The noise navigator for MRI-guided radiotherapy
T2 - an independent method to detect physiological motion
AU - Navest, R J M
AU - Mandija, S
AU - Zijlema, S E
AU - Stemkens, B
AU - Andreychenko, A
AU - Lagendijk, J J W
AU - van den Berg, C A T
N1 - Publisher Copyright:
© 2020 Institute of Physics and Engineering in Medicine.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/6/21
Y1 - 2020/6/21
N2 - Motion is problematic during radiotherapy as it could lead to potential underdosage of the tumor, and/or overdosage in organs-at-risk. A solution is adaptive radiotherapy guided by magnetic resonance imaging (MRI). MRI allows for imaging of target volumes and organs-at-risk before and during treatment delivery with superb soft tissue contrast in any desired orientation, enabling motion management by means of (real-time) adaptive radiotherapy. The noise navigator, which is independent of the MR signal, could serve as a secondary motion detection method in synergy with MR imaging. The feasibility of respiratory motion detection by means of the noise navigator was demonstrated previously. Furthermore, from electromagnetic simulations we know that the noise navigator is sensitive to tissue displacement and thus could in principle be used for the detection of various types of motion. In this study we demonstrate the detection of various types of motion for three anatomical use cases of MRI-guided radiotherapy, i.e. torso (bulk movement and variable breathing), head-and-neck (swallowing) and cardiac. Furthermore, it is shown that the noise navigator can detect bulk movement, variable breathing and swallowing on a hybrid 1.5 T MRI-linac system. Cardiac activity detection through the noise navigator seems feasible in an MRI-guided radiotherapy setting, but needs further optimization. The noise navigator is a versatile and fast (millisecond temporal resolution) motion detection method independent of MR signal that could serve as an independent verification method to detect the occurrence of motion in synergy with real-time MRI-guided radiotherapy.
AB - Motion is problematic during radiotherapy as it could lead to potential underdosage of the tumor, and/or overdosage in organs-at-risk. A solution is adaptive radiotherapy guided by magnetic resonance imaging (MRI). MRI allows for imaging of target volumes and organs-at-risk before and during treatment delivery with superb soft tissue contrast in any desired orientation, enabling motion management by means of (real-time) adaptive radiotherapy. The noise navigator, which is independent of the MR signal, could serve as a secondary motion detection method in synergy with MR imaging. The feasibility of respiratory motion detection by means of the noise navigator was demonstrated previously. Furthermore, from electromagnetic simulations we know that the noise navigator is sensitive to tissue displacement and thus could in principle be used for the detection of various types of motion. In this study we demonstrate the detection of various types of motion for three anatomical use cases of MRI-guided radiotherapy, i.e. torso (bulk movement and variable breathing), head-and-neck (swallowing) and cardiac. Furthermore, it is shown that the noise navigator can detect bulk movement, variable breathing and swallowing on a hybrid 1.5 T MRI-linac system. Cardiac activity detection through the noise navigator seems feasible in an MRI-guided radiotherapy setting, but needs further optimization. The noise navigator is a versatile and fast (millisecond temporal resolution) motion detection method independent of MR signal that could serve as an independent verification method to detect the occurrence of motion in synergy with real-time MRI-guided radiotherapy.
KW - magnetic resonance imaging
KW - noise navigator
KW - physiological motion
KW - radiotherapy
KW - thermal noise
UR - http://www.scopus.com/inward/record.url?scp=85086986802&partnerID=8YFLogxK
U2 - 10.1088/1361-6560/ab8cd8
DO - 10.1088/1361-6560/ab8cd8
M3 - Article
C2 - 32330921
SN - 0031-9155
VL - 65
JO - Physics in medicine and biology
JF - Physics in medicine and biology
IS - 12
M1 - 12NT01
ER -