TY - JOUR
T1 - The metabolic hormone adiponectin affects the correlation between nutritional status and pneumococcal vaccine response in vulnerable indigenous children
AU - Siegers, Kris E.
AU - van Herwaarden, Antonius E.
AU - de Waard, Jacobus H.
AU - del Nogal, Berenice
AU - Hermans, Peter W.M.
AU - van Tienoven, Doorlène
AU - Berbers, Guy A.M.
AU - de Jonge, Marien I.
AU - Verhagen, Lilly M.
N1 - Publisher Copyright:
© 2022 Siegers et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2022/7
Y1 - 2022/7
N2 - Background Almost 200 million children worldwide are either undernourished or overweight. Only a few studies have addressed the effect of variation in nutritional status on vaccine response. We previously demonstrated an association between stunting and an increased post-vaccination 13-valent pneumococcal conjugate vaccine (PCV13) response. In this prospective study, we assessed to what extent metabolic hormones may be a modifier in the association between nutritional status and PCV13 response. Methods Venezuelan children aged 6 weeks to 59 months were vaccinated with a primary series of PCV13. Nutritional status and serum levels of leptin, adiponectin and ghrelin were measured upon vaccination and their combined effect on serum post-vaccination antibody concentrations was assessed by generalized estimating equations multivariable regression analysis. Results A total of 210 children were included, of whom 80 were stunted, 81 had a normal weight and 49 were overweight. Overweight children had lower post-vaccination antibody concentrations than normal weight children (regression coefficient -1.15, 95% CI -2.22 –-0.072). Additionally, there was a significant adiponectin-nutritional status interaction. In stunted children, higher adiponectin serum concentrations were associated with lower postPCV13 antibody concentrations (regression coefficient -0.19, 95% CI -0.24 –-0.14) while the opposite was seen in overweight children (regression coefficient 0.14, 95% CI 0.049–0.22). Conclusion Metabolic hormones, in particular adiponectin, may modify the effect of nutritional status on pneumococcal vaccine response. These findings emphasize the importance of further research to better understand the immunometabolic pathways underlying vaccine response and enable a future of optimal personalized vaccination schedules.
AB - Background Almost 200 million children worldwide are either undernourished or overweight. Only a few studies have addressed the effect of variation in nutritional status on vaccine response. We previously demonstrated an association between stunting and an increased post-vaccination 13-valent pneumococcal conjugate vaccine (PCV13) response. In this prospective study, we assessed to what extent metabolic hormones may be a modifier in the association between nutritional status and PCV13 response. Methods Venezuelan children aged 6 weeks to 59 months were vaccinated with a primary series of PCV13. Nutritional status and serum levels of leptin, adiponectin and ghrelin were measured upon vaccination and their combined effect on serum post-vaccination antibody concentrations was assessed by generalized estimating equations multivariable regression analysis. Results A total of 210 children were included, of whom 80 were stunted, 81 had a normal weight and 49 were overweight. Overweight children had lower post-vaccination antibody concentrations than normal weight children (regression coefficient -1.15, 95% CI -2.22 –-0.072). Additionally, there was a significant adiponectin-nutritional status interaction. In stunted children, higher adiponectin serum concentrations were associated with lower postPCV13 antibody concentrations (regression coefficient -0.19, 95% CI -0.24 –-0.14) while the opposite was seen in overweight children (regression coefficient 0.14, 95% CI 0.049–0.22). Conclusion Metabolic hormones, in particular adiponectin, may modify the effect of nutritional status on pneumococcal vaccine response. These findings emphasize the importance of further research to better understand the immunometabolic pathways underlying vaccine response and enable a future of optimal personalized vaccination schedules.
UR - http://www.scopus.com/inward/record.url?scp=85134798301&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0270736
DO - 10.1371/journal.pone.0270736
M3 - Article
C2 - 35862344
AN - SCOPUS:85134798301
SN - 1932-6203
VL - 17
JO - PLoS ONE
JF - PLoS ONE
IS - 7 July
M1 - e0270736
ER -