TY - JOUR
T1 - The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on β-hemolysin-converting bacteriophages
AU - Van Wamel, Willem J.B.
AU - Rooijakkers, Suzan H.M.
AU - Ruyken, Maartje
AU - Van Kessel, Kok P.M.
AU - Van Strijp, Jos A.G.
PY - 2006/2/1
Y1 - 2006/2/1
N2 - Two newly discovered immune modulators, chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) and Staphylococcal complement inhibitor (SCIN), cluster on the conserved 3′ end of β-hemolysin (hlb)- converting bacteriophages (βC-Φs). Since these βC-Φs also carry the genes for the immune evasion molecules staphylokinase (sak) and enterotoxin A (sea), this 8-kb region at the 3′ end of βC-Φ represents an innate immune evasion cluster (IEC). By PCR and Southern analyses of 85 clinical Staphylococcus aureus strains and 5 classical laboratory strains, we show that 90% of S. aureus strains carry a βC-Φ with an IEC. Seven IEC variants were discovered, carrying different combinations of chp, sak, or sea (or sep), always in the same 5′-to-3′ orientation and on the 3′ end of a βC-Φ. From most IEC variants we could isolate active bacteriophages by mitomycin C treatment, of which lysogens were generated in S. aureus R5 (broad phage host). All IEC-carrying bacteriophages integrated into hlb, as was measured by Southern blotting of R5 lysogens. Large quantities of the different bacteriophages were obtained by mitomycin C treatment of the lysogens, and bacteriophages were collected and used to reinfect all lysogenic R5 strains. In total, five lytic families were found. Furthermore, phage DNA was isolated and digested with EcoR1, revealing that one IEC variant can be found on different βI-Φs. In conclusion, the four human-specific innate immune modulators SCIN, CHIPS, SAK, and SEA form an IEC that is easily transferred among S. aureus strains by a diverse group of β-hemolysin-converting bacteriophages.
AB - Two newly discovered immune modulators, chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) and Staphylococcal complement inhibitor (SCIN), cluster on the conserved 3′ end of β-hemolysin (hlb)- converting bacteriophages (βC-Φs). Since these βC-Φs also carry the genes for the immune evasion molecules staphylokinase (sak) and enterotoxin A (sea), this 8-kb region at the 3′ end of βC-Φ represents an innate immune evasion cluster (IEC). By PCR and Southern analyses of 85 clinical Staphylococcus aureus strains and 5 classical laboratory strains, we show that 90% of S. aureus strains carry a βC-Φ with an IEC. Seven IEC variants were discovered, carrying different combinations of chp, sak, or sea (or sep), always in the same 5′-to-3′ orientation and on the 3′ end of a βC-Φ. From most IEC variants we could isolate active bacteriophages by mitomycin C treatment, of which lysogens were generated in S. aureus R5 (broad phage host). All IEC-carrying bacteriophages integrated into hlb, as was measured by Southern blotting of R5 lysogens. Large quantities of the different bacteriophages were obtained by mitomycin C treatment of the lysogens, and bacteriophages were collected and used to reinfect all lysogenic R5 strains. In total, five lytic families were found. Furthermore, phage DNA was isolated and digested with EcoR1, revealing that one IEC variant can be found on different βI-Φs. In conclusion, the four human-specific innate immune modulators SCIN, CHIPS, SAK, and SEA form an IEC that is easily transferred among S. aureus strains by a diverse group of β-hemolysin-converting bacteriophages.
UR - http://www.scopus.com/inward/record.url?scp=32444434054&partnerID=8YFLogxK
U2 - 10.1128/JB.188.4.1310-1315.2006
DO - 10.1128/JB.188.4.1310-1315.2006
M3 - Article
C2 - 16452413
AN - SCOPUS:32444434054
SN - 0021-9193
VL - 188
SP - 1310
EP - 1315
JO - Journal of Bacteriology
JF - Journal of Bacteriology
IS - 4
ER -