Abstract
Given its fundamental role in development and cancer, the Wnt-β-catenin signaling pathway is tightly controlled at multiple levels. RING finger protein 43 (RNF43) is an E3 ubiquitin ligase originally found in stem cells and proposed to inhibit Wnt signaling by interacting with the Wnt receptors of the Frizzled family. We detected endogenous RNF43 in the nucleus of human intestinal crypt and colon cancer cells. We found that RNF43 physically interacted with T cell factor 4 (TCF4) in cells and tethered TCF4 to the nuclear membrane, thus silencing TCF4 transcriptional activity even in the presence of constitutively activemutants of β-catenin. This inhibitorymechanismwas disrupted by the expression ofRNF43 bearing mutations found in human gastrointestinal tumors, and transactivation of theWnt pathway was observed in various cells and in Xenopus embryos when the RING domain of RNF43 was mutated. Our findings indicate thatRNF43 inhibits theWnt pathway downstreamof oncogenicmutations that activate the pathway. Mimicking or enhancing this inhibitory activity of RNF43 may be useful to treat cancers arising from aberrant activation of the Wnt pathway.
Original language | English |
---|---|
Article number | ra90 |
Number of pages | 13 |
Journal | Science Signaling |
Volume | 8 |
Issue number | 393 |
DOIs | |
Publication status | Published - 8 Sept 2015 |