Abstract
Purpose: The coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable-coil coupling and simplifying cable routing. Additionally, its flexibility improves loading to the subject. Methods: Like the coax dipole antenna, an interruption in the shield of the coaxial cable allows the current to extend to the outside of the shield, generating a B1+ field. Matching is achieved using a single inductor at the distal side, and a cable trap enforces the desired antenna length. Finite difference time domain simulations are employed to optimize the design parameters. Phantom measurements are conducted to determine the antenna's B1+ efficiency and to find the S-parameters in straight and bent positions. Eight-channel simulations and measurements are performed for prostate imaging. Results: The optimal configuration is a length of 360 mm with a gap position of 40 mm. Simulation data show higher B1+ levels for the coax monopole (20% in the prostate), albeit with a 5% lower specific absorbance rate efficiency, compared to the fractionated dipole antenna. The S11 of the coax monopole exhibits remarkable robustness to loading changes. In vivo prostate imaging demonstrates B1+ levels of 10–14 μT with an input power of 8 × 800 W, which is comparable to the fractionated dipole antenna. High-quality images and acceptable coupling levels were achieved. Conclusion: The coax monopole is a novel, flexible antenna for body imaging at 7 T. Its simple design incorporates a single inductor at the distal side to achieve matching, and one-sided feeding greatly simplifies cable routing.
Original language | English |
---|---|
Pages (from-to) | 361-373 |
Number of pages | 13 |
Journal | Magnetic Resonance in Medicine |
Volume | 92 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jul 2024 |
Keywords
- Engineering
- RF coil arrays
- ultrahigh field MRI