TY - JOUR
T1 - The Association Between Time-Varying Wall Shear Stress and the Development of Plaque Ulcerations in Carotid Arteries From the Plaque at Risk Study
AU - Dilba, Kristine
AU - van Dam-Nolen, Dianne H K
AU - Korteland, Suze-Anne
AU - van der Kolk, Anja G
AU - Kassem, Mohamed
AU - Bos, Daniel
AU - Koudstaal, Peter J
AU - Nederkoorn, Paul J
AU - Hendrikse, Jeroen
AU - Kooi, M Eline
AU - Gijsen, Frank J H
AU - van der Steen, Anton F W
AU - van der Lugt, Aad
AU - Wentzel, Jolanda J
N1 - Publisher Copyright:
Copyright © 2021 Dilba, van Dam-Nolen, Korteland, van der Kolk, Kassem, Bos, Koudstaal, Nederkoorn, Hendrikse, Kooi, Gijsen, van der Steen, van der Lugt and Wentzel.
PY - 2021/11/18
Y1 - 2021/11/18
N2 - Background and Purpose: Shear stress (WSS) is involved in the pathophysiology of atherosclerotic disease and might affect plaque ulceration. In this case-control study, we compared carotid plaques that developed a new ulcer during follow-up and plaques that remained silent for their exposure to time-dependent oscillatory shear stress parameters at baseline. Materials and Methods: Eighteen patients who underwent CTA and MRI of their carotid arteries at baseline and 2 years follow-up were included. These 18 patients consisted of six patients who demonstrated a new ulcer and 12 control patients selected from a larger cohort with similar MRI-based plaque characteristics as the ulcer group. (Oscillatory) WSS parameters [time average WSS, oscillatory shear index (OSI), and relative residence time (RRT)] were calculated using computational fluid dynamics applying the MRI-based geometry of the carotid arteries and compared among plaques (wall thickness>2 mm) with and without ulceration (Mann-Whitney U test) and ulcer-site vs. non-ulcer-site within the plaque (Wilcoxon signed rank test). More detailed analysis on ulcer cases was performed and the predictive value of oscillatory WSS parameters was calculated using linear and logistic mixed-effect regression models. Results: The ulcer group demonstrated no difference in maximum WSS [9.9 (6.6-18.5) vs. 13.6 (9.7-17.7) Pa, p = 0.349], a lower maximum OSI [0.04 (0.01-0.10) vs. 0.12 (0.06-0.20) p = 0.019] and lower maximum RRT [1.25 (0.78-2.03) Pa-1 vs. 2.93 (2.03-5.28) Pa-1, p = 0.011] compared to controls. The location of the ulcer (ulcer-site) within the plaque was not always at the maximal WSS, but demonstrated higher average WSS, lower average RRT and OSI at the ulcer-site compared to the non-ulcer-sites. High WSS (WSS>4.3 Pa) and low RRT (RRT < 0.25 Pa) were associated with ulceration with an odds ratio of 3.6 [CI 2.1-6.3] and 2.6 [CI 1.54-4.44] respectively, which remained significant after adjustment for wall thickness. Conclusion: In this explorative study, ulcers were not exclusively located at plaque regions exposed to the highest WSS, OSI, or RRT, but high WSS and low RRT regions had a significantly higher odds to present ulceration within the plaque even after adjustment for wall thickness.
AB - Background and Purpose: Shear stress (WSS) is involved in the pathophysiology of atherosclerotic disease and might affect plaque ulceration. In this case-control study, we compared carotid plaques that developed a new ulcer during follow-up and plaques that remained silent for their exposure to time-dependent oscillatory shear stress parameters at baseline. Materials and Methods: Eighteen patients who underwent CTA and MRI of their carotid arteries at baseline and 2 years follow-up were included. These 18 patients consisted of six patients who demonstrated a new ulcer and 12 control patients selected from a larger cohort with similar MRI-based plaque characteristics as the ulcer group. (Oscillatory) WSS parameters [time average WSS, oscillatory shear index (OSI), and relative residence time (RRT)] were calculated using computational fluid dynamics applying the MRI-based geometry of the carotid arteries and compared among plaques (wall thickness>2 mm) with and without ulceration (Mann-Whitney U test) and ulcer-site vs. non-ulcer-site within the plaque (Wilcoxon signed rank test). More detailed analysis on ulcer cases was performed and the predictive value of oscillatory WSS parameters was calculated using linear and logistic mixed-effect regression models. Results: The ulcer group demonstrated no difference in maximum WSS [9.9 (6.6-18.5) vs. 13.6 (9.7-17.7) Pa, p = 0.349], a lower maximum OSI [0.04 (0.01-0.10) vs. 0.12 (0.06-0.20) p = 0.019] and lower maximum RRT [1.25 (0.78-2.03) Pa-1 vs. 2.93 (2.03-5.28) Pa-1, p = 0.011] compared to controls. The location of the ulcer (ulcer-site) within the plaque was not always at the maximal WSS, but demonstrated higher average WSS, lower average RRT and OSI at the ulcer-site compared to the non-ulcer-sites. High WSS (WSS>4.3 Pa) and low RRT (RRT < 0.25 Pa) were associated with ulceration with an odds ratio of 3.6 [CI 2.1-6.3] and 2.6 [CI 1.54-4.44] respectively, which remained significant after adjustment for wall thickness. Conclusion: In this explorative study, ulcers were not exclusively located at plaque regions exposed to the highest WSS, OSI, or RRT, but high WSS and low RRT regions had a significantly higher odds to present ulceration within the plaque even after adjustment for wall thickness.
KW - MRI
KW - atherosclerotic cardiovascular disease
KW - carotid
KW - computational fluid dynamics
KW - risk
KW - shear stress (fluid)
KW - ulceration
U2 - 10.3389/fcvm.2021.732646
DO - 10.3389/fcvm.2021.732646
M3 - Article
C2 - 34869634
SN - 2297-055X
VL - 8
JO - Frontiers in cardiovascular medicine
JF - Frontiers in cardiovascular medicine
M1 - 732646
ER -