Synthetic CT for the planning of MR-HIFU treatment of bone metastases in pelvic and femoral bones: a feasibility study

Beatrice Lena*, Mateusz C. Florkow, Cyril J. Ferrer, Marijn van Stralen, Peter R. Seevinck, Evert Jan P.A. Vonken, Martijn F. Boomsma, Derk J. Slotman, Max A. Viergever, Chrit T.W. Moonen, Clemens Bos, Lambertus W. Bartels

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

20 Downloads (Pure)

Abstract

Objectives: Visualization of the bone distribution is an important prerequisite for MRI-guided high-intensity focused ultrasound (MRI-HIFU) treatment planning of bone metastases. In this context, we evaluated MRI-based synthetic CT (sCT) imaging for the visualization of cortical bone. Methods: MR and CT images of nine patients with pelvic and femoral metastases were retrospectively analyzed in this study. The metastatic lesions were osteolytic, osteoblastic or mixed. sCT were generated from pre-treatment or treatment MR images using a UNet-like neural network. sCT was qualitatively and quantitatively compared to CT in the bone (pelvis or femur) containing the metastasis and in a region of interest placed on the metastasis itself, through mean absolute difference (MAD), mean difference (MD), Dice similarity coefficient (DSC), and root mean square surface distance (RMSD). Results: The dataset consisted of 3 osteolytic, 4 osteoblastic and 2 mixed metastases. For most patients, the general morphology of the bone was well represented in the sCT images and osteolytic, osteoblastic and mixed lesions could be discriminated. Despite an average timespan between MR and CT acquisitions of 61 days, in bone, the average (± standard deviation) MAD was 116 ± 26 HU, MD − 14 ± 66 HU, DSC 0.85 ± 0.05, and RMSD 2.05 ± 0.48 mm and, in the lesion, MAD was 132 ± 62 HU, MD − 31 ± 106 HU, DSC 0.75 ± 0.2, and RMSD 2.73 ± 2.28 mm. Conclusions: Synthetic CT images adequately depicted the cancellous and cortical bone distribution in the different lesion types, which shows its potential for MRI-HIFU treatment planning. Key Points: • Synthetic computed tomography was able to depict bone distribution in metastatic lesions. • Synthetic computed tomography images intrinsically aligned with treatment MR images may have the potential to facilitate MR-HIFU treatment planning of bone metastases, by combining visualization of soft tissues and cancellous and cortical bone.

Original languageEnglish
Pages (from-to)4537-4546
Number of pages10
JournalEuropean Radiology
Volume32
Issue number7
DOIs
Publication statusPublished - Jul 2022

Keywords

  • CT
  • High-intensity focused ultrasound ablation
  • MRI
  • Neoplasm metastasis
  • Synthetic CT

Fingerprint

Dive into the research topics of 'Synthetic CT for the planning of MR-HIFU treatment of bone metastases in pelvic and femoral bones: a feasibility study'. Together they form a unique fingerprint.

Cite this