TY - JOUR
T1 - Source localization of sensory gating
T2 - A combined EEG and fMRI study in healthy volunteers
AU - Bak, Nikolaj
AU - Glenthoj, Birte Y.
AU - Rostrup, Egill
AU - Larsson, Henrik B.
AU - Oranje, Bob
PY - 2011/2/14
Y1 - 2011/2/14
N2 - Reduced sensory gating appears to be among the core features in schizophrenia. The sources of sensory gating however are largely unknown. The aim of the current study was to identify these sources, with concurrent EEG and fMRI methodology. Twenty healthy male volunteers were tested with identical P50 suppression paradigms in two separate sessions: an EEG setting, and an EEG concurrent with fMRI setting. The stimuli in the P50 paradigm consisted of weak electrical stimulation of the left median nerve. The stimuli were presented in pairs with either 500. ms or 1000. ms interstimulus intervals (ISI). No difference was found between the EEG setting and the concurrent EEG and fMRI setting. P50 suppression was, in both settings, found only in the 500. ms trials, not in the 1000. ms trials. EEG-dipole modeling resulted in 4 sources located in the medial frontal gyrus, the insula, the hippocampus, and primary somatosensory cortex. These sources corresponded to significant fMRI clusters located in the medial frontal gyrus, the insula, the claustrum, and the hippocampus. Activity in the hippocampus and the claustrum was higher in the trials with suppression, suggesting that these brain areas are involved in the inhibitory processes of P50 suppression. The opposite was found for activity in the medial frontal gyrus and the insula, suggesting that these brain areas are involved in the generation of the P50 amplitude. To our knowledge, this is the first study demonstrating that P50 suppression can be reliably assessed inside an MRI scanner.
AB - Reduced sensory gating appears to be among the core features in schizophrenia. The sources of sensory gating however are largely unknown. The aim of the current study was to identify these sources, with concurrent EEG and fMRI methodology. Twenty healthy male volunteers were tested with identical P50 suppression paradigms in two separate sessions: an EEG setting, and an EEG concurrent with fMRI setting. The stimuli in the P50 paradigm consisted of weak electrical stimulation of the left median nerve. The stimuli were presented in pairs with either 500. ms or 1000. ms interstimulus intervals (ISI). No difference was found between the EEG setting and the concurrent EEG and fMRI setting. P50 suppression was, in both settings, found only in the 500. ms trials, not in the 1000. ms trials. EEG-dipole modeling resulted in 4 sources located in the medial frontal gyrus, the insula, the hippocampus, and primary somatosensory cortex. These sources corresponded to significant fMRI clusters located in the medial frontal gyrus, the insula, the claustrum, and the hippocampus. Activity in the hippocampus and the claustrum was higher in the trials with suppression, suggesting that these brain areas are involved in the inhibitory processes of P50 suppression. The opposite was found for activity in the medial frontal gyrus and the insula, suggesting that these brain areas are involved in the generation of the P50 amplitude. To our knowledge, this is the first study demonstrating that P50 suppression can be reliably assessed inside an MRI scanner.
KW - Concurrent assessment
KW - EEG
KW - FMRI
KW - P50 suppression
KW - Sensory gating
KW - Source localization
UR - http://www.scopus.com/inward/record.url?scp=78650951399&partnerID=8YFLogxK
U2 - 10.1016/j.neuroimage.2010.11.039
DO - 10.1016/j.neuroimage.2010.11.039
M3 - Article
C2 - 21109008
AN - SCOPUS:78650951399
SN - 1053-8119
VL - 54
SP - 2711
EP - 2718
JO - NeuroImage
JF - NeuroImage
IS - 4
ER -