Single-cell Sequencing of Circulating Human Plasmablasts during Staphylococcus aureus Bacteremia

Priscilla F Kerkman, Lisanne de Vor, Thomas W van der Vaart, Thijs Ten Doesschate, Remy M Muts, Jamie S Depelteau, Lisette M Scheepmaker, Maartje Ruyken, Carla J C de Haas, Piet C Aerts, Renoud J Marijnissen, Janine Schuurman, Frank J Beurskens, Andrea Gorlani, Bart W Bardoel, Suzan H M Rooijakkers*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Staphylococcus aureus is the major cause of healthcare-associated infections, including life-threatening conditions as bacteremia, endocarditis, and implant-associated infections. Despite adequate antibiotic treatment, the mortality of S. aureus bacteremia remains high. This calls for different strategies to treat this infection. In past years, sequencing of Ab repertoires from individuals previously exposed to a pathogen emerged as a successful method to discover novel therapeutic monoclonal Abs and understand circulating B cell diversity during infection. In this paper, we collected peripheral blood from 17 S. aureus bacteremia patients to study circulating plasmablast responses. Using single-cell transcriptome gene expression combined with sequencing of variable heavy and light Ig genes, we retrieved sequences from >400 plasmablasts revealing a high diversity with >300 unique variable heavy and light sequences. More than 200 variable sequences were synthesized to produce recombinant IgGs that were analyzed for binding to S. aureus whole bacterial cells. This revealed four novel monoclonal Abs that could specifically bind to the surface of S. aureus in the absence of Ig-binding surface SpA. Interestingly, three of four mAbs showed cross-reactivity with Staphylococcus epidermidis. Target identification revealed that the S. aureus-specific mAb BC153 targets wall teichoic acid, whereas cross-reactive mAbs BC019, BC020, and BC021 target lipoteichoic acid. All mAbs could induce Fc-dependent phagocytosis of staphylococci by human neutrophils. Altogether, we characterize the active B cell responses to S. aureus in infected patients and identify four functional mAbs against the S. aureus surface, of which three cross-react with S. epidermidis.

Original languageEnglish
Pages (from-to)1644-1655
Number of pages12
JournalJournal of immunology (Baltimore, Md. : 1950)
Volume213
Issue number11
Early online date25 Oct 2024
DOIs
Publication statusPublished - 1 Dec 2024

Fingerprint

Dive into the research topics of 'Single-cell Sequencing of Circulating Human Plasmablasts during Staphylococcus aureus Bacteremia'. Together they form a unique fingerprint.

Cite this