Signalling dynamics in embryonic development

Katharina F. Sonnen*, Claudia Y. Janda

*Corresponding author for this work

    Research output: Contribution to journalReview articlepeer-review

    1 Downloads (Pure)

    Abstract

    In multicellular organisms, cellular behaviour is tightly regulated to allow proper embryonic development and maintenance of adult tissue. A critical component in this control is the communication between cells via signalling pathways, as errors in intercellular communication can induce developmental defects or diseases such as cancer. It has become clear over the last years that signalling is not static but varies in activity over time. Feedback mechanisms present in every signalling pathway lead to diverse dynamic phenotypes, such as transient activation, signal ramping or oscillations, occurring in a cell type- and stage-dependent manner. In cells, such dynamics can exert various functions that allow organisms to develop in a robust and reproducible way. Here, we focus on Erk, Wnt and Notch signalling pathways, which are dynamic in several tissue types and organisms, including the periodic segmentation of vertebrate embryos, and are often dysregulated in cancer. We will discuss how biochemical processes influence their dynamics and how these impact on cellular behaviour within multicellular systems.

    Original languageEnglish
    Pages (from-to)4045-4070
    Number of pages26
    JournalBiochemical Journal
    Volume478
    Issue number23
    DOIs
    Publication statusPublished - Dec 2021

    Fingerprint

    Dive into the research topics of 'Signalling dynamics in embryonic development'. Together they form a unique fingerprint.

    Cite this