Sequential intravital imaging reveals in vivo dynamics of pancreatic tissue transplanted under the kidney capsule in mice

Léon van Gurp, Cindy J M Loomans, Pim P. van Krieken, Gitanjali Dharmadhikari, Erik Jansen, Femke C A S Ringnalda, Evelyne Beerling, Jacco van Rheenen, Eelco J P de Koning*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

1 Downloads (Pure)

Abstract

Aims/hypothesis: Dynamic processes in pancreatic tissue are difficult to study. We aimed to develop an intravital imaging method to longitudinally examine engraftment, vascularisation, expansion and differentiation in mature islets or embryonic pancreases transplanted under the kidney capsule. Methods: Isolated pancreatic islets from adult mice and murine embryonic day (E)12.5 pancreases containing fluorescent biomarkers were transplanted under the kidney capsule of immunodeficient recipient mice. Human islet cells were dispersed, transduced with a lentivirus expressing a fluorescent label and reaggregated before transplantation. Graft-containing kidneys were positioned subcutaneously and an imaging window was fitted into the skin on top of the kidney. Intravital imaging using multiphoton microscopy was performed for up to 2 weeks. Volumes of fluorescently labelled cells were determined as a measure of development and survival. Results: Transplanted islets and embryonic pancreases showed good engraftment and remained viable. Engraftment and vascularisation could be longitudinally examined in murine and human islet cells. Murine islet beta cell volume was unchanged over time. Transplanted embryonic pancreases increased to up to 6.1 times of their original volume and beta cell volume increased 90 times during 2 weeks. Conclusions/interpretation: This method allows for repeated intravital imaging of grafts containing various sources of pancreatic tissue transplanted under the kidney capsule. Using fluorescent markers, dynamic information concerning engraftment or differentiation can be visualised and measured.

Original languageEnglish
Pages (from-to)2387-2392
Number of pages6
JournalDiabetologia
Volume59
Issue number11
DOIs
Publication statusPublished - 1 Nov 2016

Keywords

  • Development
  • Embryonic
  • Human
  • Imaging
  • Intravital
  • Islets
  • Microscopy
  • Mouse
  • Pancreas
  • Transplantation

Fingerprint

Dive into the research topics of 'Sequential intravital imaging reveals in vivo dynamics of pancreatic tissue transplanted under the kidney capsule in mice'. Together they form a unique fingerprint.

Cite this