TY - JOUR
T1 - Remineralization of lytic spinal metastases after radiotherapy
AU - Pielkenrood, Bart J.
AU - Visser, Thomas F.
AU - van Tol, Floris R.
AU - Foppen, Wouter
AU - Eppinga, Wietse S.C.
AU - Verhoeff, Joost J.C.
AU - Bol, Gijs H.
AU - Van der Velden, Joanne M.
AU - Verlaan, Jorrit Jan
N1 - Funding Information:
We would like to thanks NKA Kasperts for her contributions.
Publisher Copyright:
© 2023 The Authors
PY - 2023/4
Y1 - 2023/4
N2 - BACKGROUND CONTEXT: Palliative radiotherapy (RT) can lead to remineralization of osteolytic lesions thereby potentially restoring some of the weight-bearing capacity and preventing vertebral collapse. It is not clear, however, under which circumstances remineralization of osteolytic lesions occurs. PURPOSE: The aim of this study was to investigate the change in bone mineral density in spinal metastases after RT compared to a reference region, and find associated factors. STUDY DESIGN: Retrospective analysis within prospective observational cohort OUTCOME MEASURES: change in bone mineral density measured in Hounsfield Units (HU). PATIENT SAMPLE: patients treated with RT for (painful) bone metastases. METHODS: Patients with spinal metastases were included if computed tomography scans both pre- and post-RT were available. Bone density was measured in HU. A region of interest (ROI) was drawn manually in the metastatic lesion. As a reference, a measurement of bone density in adjacent, unaffected, and non-irradiated vertebrae was used. Factors tested for association were origin of the primary tumor, RT dose and fractionation scheme, and concomitant use of bisphosphonates. RESULTS: A total of 31 patients with 49 spinal metastases, originating from various primary tumors, were included. The median age on baseline was 58 years (IQR: 53–63) and median time between baseline and follow-up scan was 8.2 months (IQR: 3.0–18.4). Difference in HU in the lesion before and after treatment was 146.9 HU (95% CI 68.4–225.4; p<.01). Difference in HU in the reference vertebra between baseline and first follow-up was 19.1 HU (95% CI -47.9 to 86.0; p=.58). Difference between reference vertebrae and metastatic lesions on baseline was -194.1 HU (95% CI -276.2 to -112.0; p<.01). After RT, this difference was reduced to -50.3 HU (95% CI -199.6 to 99.0; p=.52). Patients using bisphosphonates showed a greater increase in HU, 194.1 HU versus 60.6 HU, p=.01. CONCLUSIONS: Palliative radiation of osteolytic lytic spinal metastases is positively associated with an increased bone mineral density at follow-up. The use of bisphosphonates was linked to an increased bone mineral density when used during or after RT.
AB - BACKGROUND CONTEXT: Palliative radiotherapy (RT) can lead to remineralization of osteolytic lesions thereby potentially restoring some of the weight-bearing capacity and preventing vertebral collapse. It is not clear, however, under which circumstances remineralization of osteolytic lesions occurs. PURPOSE: The aim of this study was to investigate the change in bone mineral density in spinal metastases after RT compared to a reference region, and find associated factors. STUDY DESIGN: Retrospective analysis within prospective observational cohort OUTCOME MEASURES: change in bone mineral density measured in Hounsfield Units (HU). PATIENT SAMPLE: patients treated with RT for (painful) bone metastases. METHODS: Patients with spinal metastases were included if computed tomography scans both pre- and post-RT were available. Bone density was measured in HU. A region of interest (ROI) was drawn manually in the metastatic lesion. As a reference, a measurement of bone density in adjacent, unaffected, and non-irradiated vertebrae was used. Factors tested for association were origin of the primary tumor, RT dose and fractionation scheme, and concomitant use of bisphosphonates. RESULTS: A total of 31 patients with 49 spinal metastases, originating from various primary tumors, were included. The median age on baseline was 58 years (IQR: 53–63) and median time between baseline and follow-up scan was 8.2 months (IQR: 3.0–18.4). Difference in HU in the lesion before and after treatment was 146.9 HU (95% CI 68.4–225.4; p<.01). Difference in HU in the reference vertebra between baseline and first follow-up was 19.1 HU (95% CI -47.9 to 86.0; p=.58). Difference between reference vertebrae and metastatic lesions on baseline was -194.1 HU (95% CI -276.2 to -112.0; p<.01). After RT, this difference was reduced to -50.3 HU (95% CI -199.6 to 99.0; p=.52). Patients using bisphosphonates showed a greater increase in HU, 194.1 HU versus 60.6 HU, p=.01. CONCLUSIONS: Palliative radiation of osteolytic lytic spinal metastases is positively associated with an increased bone mineral density at follow-up. The use of bisphosphonates was linked to an increased bone mineral density when used during or after RT.
KW - Bone Density
KW - Bone metastases
KW - Hounsfield Units
KW - Orthopedic surgery
KW - Radiotherapy
KW - Remineralization
KW - Spinal metastases
KW - Vertebral Fractures
UR - http://www.scopus.com/inward/record.url?scp=85146623589&partnerID=8YFLogxK
U2 - 10.1016/j.spinee.2022.12.018
DO - 10.1016/j.spinee.2022.12.018
M3 - Article
C2 - 36623735
SN - 1529-9430
VL - 23
SP - 571
EP - 578
JO - The Spine Journal
JF - The Spine Journal
IS - 4
ER -