Regenerative Therapies to Restore Interneuron Disturbances in Experimental Models of Encephalopathy of Prematurity

Josine E G Vaes, Chantal M Kosmeijer, Marthe Kaal, Rik van Vliet, Myrna J V Brandt, Manon J N L Benders, Cora H Nijboer

Research output: Contribution to journalArticleAcademicpeer-review

19 Downloads (Pure)

Abstract

Encephalopathy of Prematurity (EoP) is a major cause of morbidity in (extreme) preterm neonates. Though the majority of EoP research has focused on failure of oligodendrocyte maturation as an underlying pathophysiological mechanism, recent pioneer work has identified developmental disturbances in inhibitory interneurons to contribute to EoP. Here we investigated interneuron abnormalities in two experimental models of EoP and explored the potential of two promising treatment strategies, namely intranasal mesenchymal stem cells (MSCs) or insulin-like growth factor I (IGF1), to restore interneuron development. In rats, fetal inflammation and postnatal hypoxia led to a transient increase in total cortical interneuron numbers, with a layer-specific deficit in parvalbumin (PV)+ interneurons. Additionally, a transient excess of total cortical cell density was observed, including excitatory neuron numbers. In the hippocampal cornu ammonis (CA) 1 region, long-term deficits in total interneuron numbers and PV+ subtype were observed. In mice subjected to postnatal hypoxia/ischemia and systemic inflammation, total numbers of cortical interneurons remained unaffected; however, subtype analysis revealed a global, transient reduction in PV+ cells and a long-lasting layer-specific increase in vasoactive intestinal polypeptide (VIP)+ cells. In the dentate gyrus, a long-lasting deficit of somatostatin (SST)+ cells was observed. Both intranasal MSC and IGF1 therapy restored the majority of interneuron abnormalities in EoP mice. In line with the histological findings, EoP mice displayed impaired social behavior, which was partly restored by the therapies. In conclusion, induction of experimental EoP is associated with model-specific disturbances in interneuron development. In addition, intranasal MSCs and IGF1 are promising therapeutic strategies to aid interneuron development after EoP.

Original languageEnglish
Article number211
Pages (from-to)1-22
Number of pages22
JournalInternational journal of molecular sciences
Volume22
Issue number1
DOIs
Publication statusPublished - 1 Jan 2021

Keywords

  • Encephalopathy of prematurity
  • Insulin-like growth factor I
  • Interneurons
  • Mesenchymal stem cells
  • Neurodevelopmental disorders
  • Preterm birth
  • Regenerative medicine

Fingerprint

Dive into the research topics of 'Regenerative Therapies to Restore Interneuron Disturbances in Experimental Models of Encephalopathy of Prematurity'. Together they form a unique fingerprint.

Cite this