Abstract
Purpose: DWI is a promising modality in breast MRI, but its clinical acceptance is slow. Analysis of DWI is hampered by geometric distortion artifacts, which are caused by off-resonant spins in combination with the low phase-encoding bandwidth of the EPI sequence used. Existing correction methods assume smooth off-resonance fields, which we show to be invalid in the human breast, where high discontinuities arise at tissue interfaces. Methods: We developed a distortion correction method that incorporates high-resolution off-resonance maps to better solve for severe distortions at tissue interfaces. The method was evaluated quantitatively both ex vivo in a porcine tissue phantom and in vivo in 5 healthy volunteers. The added value of high-resolution off-resonance maps was tested using a Wilcoxon signed rank test comparing the quantitative results obtained with a low-resolution off-resonance map with those obtained with a high-resolution map. Results: Distortion correction using low-resolution off-resonance maps corrected most of the distortions, as expected. Still, all quantitative comparison metrics showed increased conformity between the corrected EPI images and a high-bandwidth reference scan for both the ex vivo and in vivo experiments. All metrics showed a significant improvement when a high-resolution off-resonance map was used (P < 0.05), in particular at tissue boundaries. Conclusion: The use of off-resonance maps of a resolution higher than EPI scans significantly improves upon existing distortion correction techniques, specifically by superior correction at glandular tissue boundaries.
Original language | English |
---|---|
Pages (from-to) | 425-435 |
Number of pages | 11 |
Journal | Magnetic Resonance in Medicine |
Volume | 82 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jul 2019 |
Keywords
- 7T
- B mapping
- breast
- diffusion-weighted imaging
- distortion correction
- echo-planar imaging
- off-resonance