Abstract
Purpose: To enable real-time adaptive magnetic resonance imaging–guided radiotherapy (MRIgRT) by obtaining time-resolved three-dimensional (3D) deformation vector fields (DVFs) with high spatiotemporal resolution and low latency ((Formula presented.) ms). Theory and Methods: Respiratory-resolved (Formula presented.) -weighted 4D-MRI of 27 patients with lung cancer were acquired using a golden-angle radial stack-of-stars readout. A multiresolution convolutional neural network (CNN) called TEMPEST was trained on up to 32 (Formula presented.) retrospectively undersampled MRI of 17 patients, reconstructed with a nonuniform fast Fourier transform, to learn optical flow DVFs. TEMPEST was validated using 4D respiratory-resolved MRI, a digital phantom, and a physical motion phantom. The time-resolved motion estimation was evaluated in-vivo using two volunteer scans, acquired on a hybrid MR-scanner with integrated linear accelerator. Finally, we evaluated the model robustness on a publicly-available four-dimensional computed tomography (4D-CT) dataset. Results: TEMPEST produced accurate DVFs on respiratory-resolved MRI at 20-fold acceleration, with the average end-point-error (Formula presented.) mm, both on respiratory-sorted MRI and on a digital phantom. TEMPEST estimated accurate time-resolved DVFs on MRI of a motion phantom, with an error (Formula presented.) mm at 28 (Formula presented.) undersampling. On two volunteer scans, TEMPEST accurately estimated motion compared to the self-navigation signal using 50 spokes per dynamic (366 (Formula presented.) undersampling). At this undersampling factor, DVFs were estimated within 200 ms, including MRI acquisition. On fully sampled CT data, we achieved a target registration error of (Formula presented.) mm without retraining the model. Conclusion: A CNN trained on undersampled MRI produced accurate 3D DVFs with high spatiotemporal resolution for MRIgRT.
Original language | English |
---|---|
Pages (from-to) | 6597-6613 |
Number of pages | 17 |
Journal | Medical Physics |
Volume | 48 |
Issue number | 11 |
DOIs | |
Publication status | Published - Nov 2021 |
Keywords
- MR-Linac
- MRI
- MRI-guided radiotherapy
- adaptive radiotherapy
- artificial intelligence
- deep learning
- motion estimation
- radiotherapy
- registration