Rapid Photocrosslinking of Silk Hydrogels with High Cell Density and Enhanced Shape Fidelity

Xiaolin Cui, Bram G. Soliman, Cesar R. Alcala-Orozco, Jun Li, Michelle A.M. Vis, Miguel Santos, Steven G. Wise, Riccardo Levato, Jos Malda, Tim B.F. Woodfield, Jelena Rnjak-Kovacina*, Khoon S. Lim

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review


Silk fibroin hydrogels crosslinked through di-tyrosine bonds are clear, elastomeric constructs with immense potential in regenerative medicine applications. In this study, demonstrated is a new visible light-mediated photoredox system for di-tyrosine bond formation in silk fibroin that overcomes major limitations of current conventional enzymatic-based crosslinking. This photomediated system rapidly crosslinks silk fibroin (<1 min), allowing encapsulation of cells at significantly higher cell densities (15 million cells mL -1 ) while retaining high cell viability (>80%). The photocrosslinked silk hydrogels present more stable mechanical properties which do not undergo spontaneous transition to stiff, β-sheet-rich networks typically seen for enzymatically crosslinked systems. These hydrogels also support long-term culture of human articular chondrocytes, with excellent cartilage tissue formation. This system also facilitates the first demonstration of biofabrication of silk fibroin constructs in the absence of chemical modification of the protein structure or rheological additives. Cell-laden constructs with complex, ordered, graduated architectures, and high resolution (40 µm) are fabricated using the photocrosslinking system, which cannot be achieved using the enzymatic crosslinking system. Taken together, this work demonstrates the immense potential of a new crosslinking approach for fabrication of elastomeric silk hydrogels with applications in biofabrication and tissue regeneration.

Original languageEnglish
Article number1901667
Pages (from-to)1-15
JournalAdvanced Healthcare Materials
Issue number4
Publication statusPublished - Feb 2020


  • biofabrication
  • cartilage
  • photo-polymerization
  • silk fibroin
  • visible light


Dive into the research topics of 'Rapid Photocrosslinking of Silk Hydrogels with High Cell Density and Enhanced Shape Fidelity'. Together they form a unique fingerprint.

Cite this