TY - JOUR
T1 - Quantification of metabolites in dried blood spots by direct infusion high resolution mass spectrometry
AU - de Sain-van der Velden, Monique G M
AU - van der Ham, Maria
AU - Gerrits, Johan
AU - Prinsen, Hubertus C M T
AU - Willemsen, Marcel
AU - Pras-Raves, Mia L
AU - Jans, Judith J
AU - Verhoeven-Duif, Nanda M
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/8/1
Y1 - 2017/8/1
N2 - Diagnosis and treatment of inborn errors of metabolism (IEM) require the analysis of a variety of metabolites. These compounds are usually quantified by targeted platforms. High resolution mass spectrometry (HRMS) has the potential to detect hundreds to thousands of metabolites simultaneously. A chip-based nanoelectrospray source (chip-based nanoESI) enables the direct infusion of biological samples. Major advantages of this system include high sample throughput, no sample carryover, and low sample consumption. The combination, chip-based nanoESI-HRMS enables untargeted metabolomics of biological samples but its potential for quantification of metabolites has not been reported. We investigated whether chip-based nanoESI-HRMS is suitable for quantification of metabolites in dried blood spots (DBS). After addition of internal standards, metabolites were extracted with methanol. Aliquots of each extract were analysed by chip-based nanoESI-HRMS operating in both positive and negative mode with an m/z window of 70-600 and a resolution of 140,000. Total run time was 4.5 min per sample and a full report could be generated within 40 min. Concentrations of all 21 investigated diagnostic metabolites in DBS as quantified by chip-based nanoESI-HRMS correlated well with those obtained by targeted liquid chromatography-tandem mass spectrometry. We conclude that chip-based nanoESI-HRMS is suitable for quantification.
AB - Diagnosis and treatment of inborn errors of metabolism (IEM) require the analysis of a variety of metabolites. These compounds are usually quantified by targeted platforms. High resolution mass spectrometry (HRMS) has the potential to detect hundreds to thousands of metabolites simultaneously. A chip-based nanoelectrospray source (chip-based nanoESI) enables the direct infusion of biological samples. Major advantages of this system include high sample throughput, no sample carryover, and low sample consumption. The combination, chip-based nanoESI-HRMS enables untargeted metabolomics of biological samples but its potential for quantification of metabolites has not been reported. We investigated whether chip-based nanoESI-HRMS is suitable for quantification of metabolites in dried blood spots (DBS). After addition of internal standards, metabolites were extracted with methanol. Aliquots of each extract were analysed by chip-based nanoESI-HRMS operating in both positive and negative mode with an m/z window of 70-600 and a resolution of 140,000. Total run time was 4.5 min per sample and a full report could be generated within 40 min. Concentrations of all 21 investigated diagnostic metabolites in DBS as quantified by chip-based nanoESI-HRMS correlated well with those obtained by targeted liquid chromatography-tandem mass spectrometry. We conclude that chip-based nanoESI-HRMS is suitable for quantification.
KW - Direct infusion
KW - Dried blood spot
KW - High resolution mass spectrometry
U2 - 10.1016/j.aca.2017.04.038
DO - 10.1016/j.aca.2017.04.038
M3 - Article
C2 - 28599708
SN - 0003-2670
VL - 979
SP - 45
EP - 50
JO - Analytica Chimica Acta
JF - Analytica Chimica Acta
ER -