TY - JOUR
T1 - PROBAST
T2 - A tool to assess the risk of bias and applicability of prediction model studies
AU - Wolff, Robert F.
AU - Moons, Karel G.M.
AU - Riley, Richard D.
AU - Whiting, Penny F.
AU - Westwood, Marie
AU - Collins, Gary S.
AU - Reitsma, Johannes B.
AU - Kleijnen, Jos
AU - Mallett, Sue
N1 - Funding Information:
Financial Support: Drs. Moons and Reitsma received financial support from the Netherlands Organisation for Scientific Research (ZONMW 918.10.615 and 91208004). Dr. Riley is a member of the Evidence Synthesis Working Group funded by the NIHR School for Primary Care Research (project 390). Dr. Whiting (time) was supported by the NIHR Collaboration for Leadership in Applied Health Research and Care West at University Hospitals Bristol NHS Foundation Trust. Dr. Collins was supported by the NIHR Biomedical Research Centre, Oxford. Dr. Mallett is supported by NIHR Birmingham Biomedical Research Centre at the University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Funding Information:
Disclaimer: This report presents independent research supported by the National Institute for Health Research (NIHR). The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the National Health Service (NHS), the NIHR, or the Department of Health and Social Care.
Publisher Copyright:
© 2019 American College of Physicians.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Clinical prediction models combine multiple predictors to estimate risk for the presence of a particular condition (diagnostic models) or the occurrence of a certain event in the future (prognostic models). PROBAST (Prediction model Risk Of Bias ASsessment Tool), a tool for assessing the risk of bias (ROB) and applicability of diagnostic and prognostic prediction model studies, was developed by a steering group that considered existing ROB tools and reporting guidelines. The tool was informed by a Delphi procedure involving 38 experts and was refined through piloting. PROBAST is organized into the following 4 domains: participants, predictors, outcome, and analysis. These domains contain a total of 20 signaling questions to facilitate structured judgment of ROB, which was defined to occur when shortcomings in study design, conduct, or analysis lead to systematically distorted estimates of model predictive performance. PROBAST enables a focused and transparent approach to assessing the ROB and applicability of studies that develop, validate, or update prediction models for individualized predictions. Although PROBAST was designed for systematic reviews, it can be used more generally in critical appraisal of prediction model studies. Potential users include organizations supporting decision making, researchers and clinicians who are interested in evidence-based medicine or involved in guideline development, journal editors, and manuscript reviewers.
AB - Clinical prediction models combine multiple predictors to estimate risk for the presence of a particular condition (diagnostic models) or the occurrence of a certain event in the future (prognostic models). PROBAST (Prediction model Risk Of Bias ASsessment Tool), a tool for assessing the risk of bias (ROB) and applicability of diagnostic and prognostic prediction model studies, was developed by a steering group that considered existing ROB tools and reporting guidelines. The tool was informed by a Delphi procedure involving 38 experts and was refined through piloting. PROBAST is organized into the following 4 domains: participants, predictors, outcome, and analysis. These domains contain a total of 20 signaling questions to facilitate structured judgment of ROB, which was defined to occur when shortcomings in study design, conduct, or analysis lead to systematically distorted estimates of model predictive performance. PROBAST enables a focused and transparent approach to assessing the ROB and applicability of studies that develop, validate, or update prediction models for individualized predictions. Although PROBAST was designed for systematic reviews, it can be used more generally in critical appraisal of prediction model studies. Potential users include organizations supporting decision making, researchers and clinicians who are interested in evidence-based medicine or involved in guideline development, journal editors, and manuscript reviewers.
UR - http://www.scopus.com/inward/record.url?scp=85059267182&partnerID=8YFLogxK
U2 - 10.7326/M18-1376
DO - 10.7326/M18-1376
M3 - Article
C2 - 30596863
AN - SCOPUS:85059267182
SN - 0003-4819
VL - 170
SP - 51
EP - 58
JO - Annals of Internal Medicine
JF - Annals of Internal Medicine
IS - 1
ER -