Prevention of microgliosis halts early memory loss in a mouse model of Alzheimer's disease

Mandy S J Kater, Christiaan F M Huffels, Takuya Oshima, Niek S Renckens, Jinte Middeldorp, Erik W G M Boddeke, August B Smit, Bart J L Eggen, Elly M Hol, Mark H G Verheijen

Research output: Contribution to journalArticleAcademicpeer-review

13 Downloads (Pure)

Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline, the neuropathological formation of amyloid-beta (Aβ) plaques and neurofibrillary tangles. The best cellular correlates of the early cognitive deficits in AD patients are synapse loss and gliosis. In particular, it is unclear whether the activation of microglia (microgliosis) has a neuroprotective or pathological role early in AD. Here we report that microgliosis is an early mediator of synaptic dysfunction and cognitive impairment in APP/PS1 mice, a mouse model of increased amyloidosis. We found that the appearance of microgliosis, synaptic dysfunction and behavioral impairment coincided with increased soluble Aβ 42 levels, and occurred well before the presence of Aβ plaques. Inhibition of microglial activity by treatment with minocycline (MC) reduced gliosis, synaptic deficits and cognitive impairments at early pathological stages and was most effective when provided preventive, i.e., before the onset of microgliosis. Interestingly, soluble Aβ levels or Aβ plaques deposition were not affected by preventive MC treatment at an early pathological stage (4 months) whereas these were reduced upon treatment at a later stage (6 months). In conclusion, this study demonstrates the importance of early-stage prevention of microgliosis on the development of cognitive impairment in APP/PS1 mice, which might be clinically relevant in preventing memory loss and delaying AD pathogenesis.

Original languageEnglish
Pages (from-to)225-241
Number of pages17
JournalBrain, Behavior, and Immunity
Volume107
Early online date18 Oct 2022
DOIs
Publication statusPublished - Jan 2023

Keywords

  • Alzheimer
  • APP/PS1
  • Microglia
  • Microgliosis
  • Minocycline

Fingerprint

Dive into the research topics of 'Prevention of microgliosis halts early memory loss in a mouse model of Alzheimer's disease'. Together they form a unique fingerprint.

Cite this