TY - JOUR
T1 - Predictive Clinical Neuroscience Portal (PCNportal)
T2 - instant online access to research-grade normative models for clinical neuroscientists.
AU - Barkema, Pieter
AU - Rutherford, Saige
AU - Lee, Hurng Chun
AU - Kia, Seyed Mostafa
AU - Savage, Hannah
AU - Beckmann, Christian
AU - Marquand, Andre
N1 - Publisher Copyright:
Copyright: © 2023 Barkema P et al.
PY - 2023
Y1 - 2023
N2 - Background: The neurobiology of mental disorders remains poorly understood despite substantial scientific efforts, due to large clinical heterogeneity and to a lack of tools suitable to map individual variability. Normative modeling is one recently successful framework that can address these problems by comparing individuals to a reference population. The methodological underpinnings of normative modelling are, however, relatively complex and computationally expensive. Our research group has developed the python-based normative modelling package Predictive Clinical Neuroscience toolkit (PCNtoolkit) which provides access to many validated algorithms for normative modelling. PCNtoolkit has since proven to be a strong foundation for large scale normative modelling, but still requires significant computation power, time and technical expertise to develop. Methods: To address these problems, we introduce PCNportal. PCNportal is an online platform integrated with PCNtoolkit that offers access to pre-trained research-grade normative models estimated on tens of thousands of participants, without the need for computation power or programming abilities. PCNportal is an easy-to-use web interface that is highly scalable to large user bases as necessary. Finally, we demonstrate how the resulting normalized deviation scores can be used in a clinical application through a schizophrenia classification task applied to cortical thickness and volumetric data from the longitudinal Northwestern University Schizophrenia Data and Software Tool (NUSDAST) dataset. Results: At each longitudinal timepoint, the transferred normative models achieved a mean[std. dev.] explained variance of 9.4[8.8]%, 9.2[9.2]%, 5.6[7.4]% respectively in the control group and 4.7[5.5]%, 6.0[6.2]%, 4.2[6.9]% in the schizophrenia group. Diagnostic classifiers achieved AUC of 0.78, 0.76 and 0.71 respectively. Conclusions: This replicates the utility of normative models for diagnostic classification of schizophrenia and showcases the use of PCNportal for clinical neuroimaging. By facilitating and speeding up research with high-quality normative models, this work contributes to research in inter-individual variability, clinical heterogeneity and precision medicine.
AB - Background: The neurobiology of mental disorders remains poorly understood despite substantial scientific efforts, due to large clinical heterogeneity and to a lack of tools suitable to map individual variability. Normative modeling is one recently successful framework that can address these problems by comparing individuals to a reference population. The methodological underpinnings of normative modelling are, however, relatively complex and computationally expensive. Our research group has developed the python-based normative modelling package Predictive Clinical Neuroscience toolkit (PCNtoolkit) which provides access to many validated algorithms for normative modelling. PCNtoolkit has since proven to be a strong foundation for large scale normative modelling, but still requires significant computation power, time and technical expertise to develop. Methods: To address these problems, we introduce PCNportal. PCNportal is an online platform integrated with PCNtoolkit that offers access to pre-trained research-grade normative models estimated on tens of thousands of participants, without the need for computation power or programming abilities. PCNportal is an easy-to-use web interface that is highly scalable to large user bases as necessary. Finally, we demonstrate how the resulting normalized deviation scores can be used in a clinical application through a schizophrenia classification task applied to cortical thickness and volumetric data from the longitudinal Northwestern University Schizophrenia Data and Software Tool (NUSDAST) dataset. Results: At each longitudinal timepoint, the transferred normative models achieved a mean[std. dev.] explained variance of 9.4[8.8]%, 9.2[9.2]%, 5.6[7.4]% respectively in the control group and 4.7[5.5]%, 6.0[6.2]%, 4.2[6.9]% in the schizophrenia group. Diagnostic classifiers achieved AUC of 0.78, 0.76 and 0.71 respectively. Conclusions: This replicates the utility of normative models for diagnostic classification of schizophrenia and showcases the use of PCNportal for clinical neuroimaging. By facilitating and speeding up research with high-quality normative models, this work contributes to research in inter-individual variability, clinical heterogeneity and precision medicine.
KW - brain growth charting
KW - braincharts
KW - normative modelling
KW - PCNtoolkit
UR - http://www.scopus.com/inward/record.url?scp=85169678823&partnerID=8YFLogxK
U2 - 10.12688/wellcomeopenres.19591.1
DO - 10.12688/wellcomeopenres.19591.1
M3 - Article
AN - SCOPUS:85169678823
SN - 2398-502X
VL - 8
JO - Wellcome Open Research
JF - Wellcome Open Research
M1 - 326
ER -