Prediction of the Proximal Humerus Morphology Based on a Statistical Shape Model with Two Parameters: Comparison to Contralateral Registration Method

Florianne E. van Schaardenburgh, H. Chien Nguyen, Joëll Magré, Koen Willemsen, Bert van Rietbergen, Stefaan Nijs*

*Corresponding author for this work

    Research output: Contribution to journalArticleAcademicpeer-review

    12 Downloads (Pure)

    Abstract

    (1) Background: Complex proximal humerus fractures often result in complications following surgical treatment. A better understanding of the full 3D displacement would provide insight into the fracture morphology. Repositioning of fracture elements is often conducted by using the contralateral side as a reconstruction template. However, this requires healthy contralateral anatomy. The purpose of this study was to create a Statistical Shape Model (SSM) and compare its effectiveness to the contralateral registration method for the prediction of the humeral proximal segment; (2) Methods: An SSM was created from 137 healthy humeri. A prediction for the proximal segment of the left humeri from eight healthy patients was made by combining the SSM with parameters. The predicted proximal segment was compared to the left proximal segment of the patients. Their left humerus was also compared to the contralateral (right) humerus; (3) Results: Eight modes explained 95% of the variation. Most deviations of the SSM prediction and the contralateral registration method were below the clinically relevant 2 mm distance threshold.; (4) Conclusions: An SSM combined with parameters is a suitable method to predict the proximal humeral segment when the contralateral CT scan is unavailable or the contralateral humerus is unhealthy, provided that the fracture pattern allows measurements of these parameters.

    Original languageEnglish
    Article number1185
    JournalBioengineering (Basel, Switzerland)
    Volume10
    Issue number10
    DOIs
    Publication statusPublished - 13 Oct 2023

    Keywords

    • 3D planning
    • humeral anatomy
    • proximal humerus fractures
    • statistical shape modelling

    Fingerprint

    Dive into the research topics of 'Prediction of the Proximal Humerus Morphology Based on a Statistical Shape Model with Two Parameters: Comparison to Contralateral Registration Method'. Together they form a unique fingerprint.

    Cite this