TY - JOUR
T1 - Prediction of aneurysmal subarachnoid hemorrhage in comparison with other stroke types using routine care data
AU - Kanning, Jos P
AU - van Os, Hendrikus J A
AU - Rakers, Margot
AU - Wermer, Marieke J H
AU - Geerlings, Mirjam I
AU - Ruigrok, Ynte M
N1 - Publisher Copyright:
© 2024 Kanning et al.
PY - 2024/5/31
Y1 - 2024/5/31
N2 - Aneurysmal subarachnoid hemorrhage (aSAH) can be prevented by early detection and treatment of intracranial aneurysms in high-risk individuals. We investigated whether individuals at high risk of aSAH in the general population can be identified by developing an aSAH prediction model with electronic health records (EHR) data. To assess the aSAH model's relative performance, we additionally developed prediction models for acute ischemic stroke (AIS) and intracerebral hemorrhage (ICH) and compared the discriminative performance of the models. We included individuals aged ≥35 years without history of stroke from a Dutch routine care database (years 2007-2020) and defined outcomes aSAH, AIS and ICH using International Classification of Diseases (ICD) codes. Potential predictors included sociodemographic data, diagnoses, medications, and blood measurements. We cross-validated a Cox proportional hazards model with an elastic net penalty on derivation cohorts and reported the c-statistic and 10-year calibration on validation cohorts. We examined 1,040,855 individuals (mean age 54.6 years, 50.9% women) for a total of 10,173,170 person-years (median 11 years). 17,465 stroke events occurred during follow-up: 723 aSAH, 14,659 AIS, and 2,083 ICH. The aSAH model's c-statistic was 0.61 (95%CI 0.57-0.65), which was lower than the c-statistic of the AIS (0.77, 95%CI 0.77-0.78) and ICH models (0.77, 95%CI 0.75-0.78). All models were well-calibrated. The aSAH model identified 19 predictors, of which the 10 strongest included age, female sex, population density, socioeconomic status, oral contraceptive use, gastroenterological complaints, obstructive airway medication, epilepsy, childbirth complications, and smoking. Discriminative performance of the aSAH prediction model was moderate, while it was good for the AIS and ICH models. We conclude that it is currently not feasible to accurately identify individuals at increased risk for aSAH using EHR data.
AB - Aneurysmal subarachnoid hemorrhage (aSAH) can be prevented by early detection and treatment of intracranial aneurysms in high-risk individuals. We investigated whether individuals at high risk of aSAH in the general population can be identified by developing an aSAH prediction model with electronic health records (EHR) data. To assess the aSAH model's relative performance, we additionally developed prediction models for acute ischemic stroke (AIS) and intracerebral hemorrhage (ICH) and compared the discriminative performance of the models. We included individuals aged ≥35 years without history of stroke from a Dutch routine care database (years 2007-2020) and defined outcomes aSAH, AIS and ICH using International Classification of Diseases (ICD) codes. Potential predictors included sociodemographic data, diagnoses, medications, and blood measurements. We cross-validated a Cox proportional hazards model with an elastic net penalty on derivation cohorts and reported the c-statistic and 10-year calibration on validation cohorts. We examined 1,040,855 individuals (mean age 54.6 years, 50.9% women) for a total of 10,173,170 person-years (median 11 years). 17,465 stroke events occurred during follow-up: 723 aSAH, 14,659 AIS, and 2,083 ICH. The aSAH model's c-statistic was 0.61 (95%CI 0.57-0.65), which was lower than the c-statistic of the AIS (0.77, 95%CI 0.77-0.78) and ICH models (0.77, 95%CI 0.75-0.78). All models were well-calibrated. The aSAH model identified 19 predictors, of which the 10 strongest included age, female sex, population density, socioeconomic status, oral contraceptive use, gastroenterological complaints, obstructive airway medication, epilepsy, childbirth complications, and smoking. Discriminative performance of the aSAH prediction model was moderate, while it was good for the AIS and ICH models. We conclude that it is currently not feasible to accurately identify individuals at increased risk for aSAH using EHR data.
KW - Adult
KW - Aged
KW - Databases, Factual
KW - Electronic Health Records
KW - Female
KW - Humans
KW - Intracranial Aneurysm/epidemiology
KW - Ischemic Stroke/epidemiology
KW - Male
KW - Middle Aged
KW - Netherlands/epidemiology
KW - Proportional Hazards Models
KW - Risk Factors
KW - Stroke/epidemiology
KW - Subarachnoid Hemorrhage/epidemiology
UR - http://www.scopus.com/inward/record.url?scp=85195013950&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0303868
DO - 10.1371/journal.pone.0303868
M3 - Article
C2 - 38820263
SN - 1932-6203
VL - 19
JO - PLoS ONE
JF - PLoS ONE
IS - 5 May
M1 - e0303868
ER -