TY - JOUR
T1 - Population-based genomic study of Plasmodium vivax malaria in seven Brazilian states and across South America
AU - Ibrahim, Amy
AU - Manko, Emilia
AU - Dombrowski, Jamille G.
AU - Campos, Mónica
AU - Benavente, Ernest Diez
AU - Nolder, Debbie
AU - Sutherland, Colin J.
AU - Nosten, Francois
AU - Fernandez, Diana
AU - Vélez-Tobón, Gabriel
AU - Castaño, Alberto Tobón
AU - Aguiar, Anna Caroline C.
AU - Pereira, Dhelio Batista
AU - da Silva Santos, Simone
AU - Suarez-Mutis, Martha
AU - Di Santi, Silvia Maria
AU - Regina de Souza Baptista, Andrea
AU - Dantas Machado, Ricardo Luiz
AU - Marinho, Claudio R.F.
AU - Clark, Taane G.
AU - Campino, Susana
N1 - Publisher Copyright:
© 2022 The Author(s)
PY - 2023/2
Y1 - 2023/2
N2 - Background: Brazil is a unique and understudied setting for malaria, with complex foci of transmission associated with human and environmental conditions. An understanding of the population genomic diversity of P. vivax parasites across Brazil can support malaria control strategies. Methods: Through whole genome sequencing of P. vivax isolates across 7 Brazilian states, we use population genomic approaches to compare genetic diversity within country (n = 123), continent (6 countries, n = 315) and globally (26 countries, n = 885). Findings: We confirm that South American isolates are distinct, have more ancestral populations than the other global regions, with differentiating mutations in genes under selective pressure linked to antimalarial drugs (pvmdr1, pvdhfr-ts) and mosquito vectors (pvcrmp3, pvP45/48, pvP47). We demonstrate Brazil as a distinct parasite population, with signals of selection including ABC transporter (PvABCI3) and PHIST exported proteins. Interpretation: Brazil has a complex population structure, with evidence of P. simium infections and Amazonian parasites separating into multiple clusters. Overall, our work provides the first Brazil-wide analysis of P. vivax population structure and identifies important mutations, which can inform future research and control measures. Funding: AI is funded by an MRC LiD PhD studentship. TGC is funded by the Medical Research Council (Grant no. MR/M01360X/1, MR/N010469/1, MR/R025576/1, MR/R020973/1 and MR/X005895/1). SC is funded by Medical Research Council UK grants (MR/M01360X/1, MR/R025576/1, MR/R020973/1 and MR/X005895/1) and Bloomsbury SET (ref. CCF17-7779). FN is funded by The Shloklo Malaria Research Unit - part of the Mahidol Oxford Research Unit, supported by the Wellcome Trust (Grant no. 220211). ARSB is funded by São Paulo Research Foundation - FAPESP (Grant no. 2002/09546–1). RLDM is funded by Brazilian National Council for Scientific and Technological Development - CNPq (Grant no. 302353/2003–8 and 471605/2011–5); CRFM is funded by FAPESP (Grant no. 2020/06747–4) and CNPq (Grant no. 302917/2019–5 and 408636/2018–1); JGD is funded by FAPESP fellowships (2016/13465–0 and 2019/12068–5) and CNPq (Grant no. 409216/2018–6).
AB - Background: Brazil is a unique and understudied setting for malaria, with complex foci of transmission associated with human and environmental conditions. An understanding of the population genomic diversity of P. vivax parasites across Brazil can support malaria control strategies. Methods: Through whole genome sequencing of P. vivax isolates across 7 Brazilian states, we use population genomic approaches to compare genetic diversity within country (n = 123), continent (6 countries, n = 315) and globally (26 countries, n = 885). Findings: We confirm that South American isolates are distinct, have more ancestral populations than the other global regions, with differentiating mutations in genes under selective pressure linked to antimalarial drugs (pvmdr1, pvdhfr-ts) and mosquito vectors (pvcrmp3, pvP45/48, pvP47). We demonstrate Brazil as a distinct parasite population, with signals of selection including ABC transporter (PvABCI3) and PHIST exported proteins. Interpretation: Brazil has a complex population structure, with evidence of P. simium infections and Amazonian parasites separating into multiple clusters. Overall, our work provides the first Brazil-wide analysis of P. vivax population structure and identifies important mutations, which can inform future research and control measures. Funding: AI is funded by an MRC LiD PhD studentship. TGC is funded by the Medical Research Council (Grant no. MR/M01360X/1, MR/N010469/1, MR/R025576/1, MR/R020973/1 and MR/X005895/1). SC is funded by Medical Research Council UK grants (MR/M01360X/1, MR/R025576/1, MR/R020973/1 and MR/X005895/1) and Bloomsbury SET (ref. CCF17-7779). FN is funded by The Shloklo Malaria Research Unit - part of the Mahidol Oxford Research Unit, supported by the Wellcome Trust (Grant no. 220211). ARSB is funded by São Paulo Research Foundation - FAPESP (Grant no. 2002/09546–1). RLDM is funded by Brazilian National Council for Scientific and Technological Development - CNPq (Grant no. 302353/2003–8 and 471605/2011–5); CRFM is funded by FAPESP (Grant no. 2020/06747–4) and CNPq (Grant no. 302917/2019–5 and 408636/2018–1); JGD is funded by FAPESP fellowships (2016/13465–0 and 2019/12068–5) and CNPq (Grant no. 409216/2018–6).
KW - Brazil
KW - Drug resistance
KW - Genomics
KW - Malaria
KW - Non-falciparum malaria
KW - Plasmodium
KW - Plasmodium vivax
KW - Population genetics
KW - South America
KW - Vector-borne diseases
KW - Whole genome sequencing
UR - http://www.scopus.com/inward/record.url?scp=85145423606&partnerID=8YFLogxK
U2 - 10.1016/j.lana.2022.100420
DO - 10.1016/j.lana.2022.100420
M3 - Article
AN - SCOPUS:85145423606
VL - 18
JO - The Lancet Regional Health - Americas
JF - The Lancet Regional Health - Americas
M1 - 100420
ER -