TY - JOUR
T1 - Photoimmuno-antimicrobial therapy for Staphylococcus aureus implant infection
AU - Dijk, Bruce van
AU - Oliveira, Sabrina
AU - Hooning van Duyvenbode, J Fred F
AU - Nurmohamed, F Ruben H A
AU - Mashayekhi, Vida
AU - Hernández, Irati Beltrán
AU - van Strijp, Jos
AU - de Vor, Lisanne
AU - Aerts, Piet C
AU - Vogely, H Charles
AU - Weinans, Harrie
AU - van der Wal, Bart C H
N1 - Publisher Copyright:
© 2024 Public Library of Science. All rights reserved.
PY - 2024/3
Y1 - 2024/3
N2 - Introduction Implant infections caused by Staphylococcus aureus are responsible for high mortality and morbidity worldwide. Treatment of these infections can be difficult especially when bacterial biofilms are involved. In this study we investigate the potential of infrared photoimmunotherapy to eradicate staphylococcal infection in a mouse model. Methods A monoclonal antibody that targets Wall Teichoic Acid surface components of both S. aureus and its biofilm (4497-IgG1) was conjugated to a photosensitizer (IRDye700DX) and used as photoimmunotherapy in vitro and in vivo in mice with a subcutaneous implant pre-colonized with biofilm of Staphylococcus aureus. A dose of 400 μg and 200 μg of antibody-photosensitizer conjugate 4497-IgG–IRDye700DXwas administered intravenously to two groups of 5 mice. In addition, multiple control groups (vancomycin treated, unconjugated IRDye700DX and IRDye700DX conjugated to a non-specific antibody) were used to verify anti-microbial effects. Results In vitro results of 4497-IgG-IRDye700DX on pre-colonized (biofilm) implants showed significant (p<0.01) colony-forming units (CFU) reduction at a concentration of 5 μg of the antibody-photosensitizer conjugate. In vivo, treatment with 4497-IgG-IRDye700DX showed no significant CFU reduction at the implant infection. However, tissue around the implant did show a significant CFU reduction with 400 μg 4497-IgG-IRDye700DX compared to control groups (p = 0.037). Conclusion This study demonstrated the antimicrobial potential of photoimmunotherapy for selectively eliminating S. aureus in vivo. However, using a solid implant instead of a catheter could result in an increased bactericidal effect of 4497-IgG-IRDye700DX and administration locally around an implant (per operative) could become valuable applications in patients that are difficult to treat with conventional methods. We conclude that photoimmunotherapy could be a potential additional therapy in the treatment of implant related infections, but requires further improvement.
AB - Introduction Implant infections caused by Staphylococcus aureus are responsible for high mortality and morbidity worldwide. Treatment of these infections can be difficult especially when bacterial biofilms are involved. In this study we investigate the potential of infrared photoimmunotherapy to eradicate staphylococcal infection in a mouse model. Methods A monoclonal antibody that targets Wall Teichoic Acid surface components of both S. aureus and its biofilm (4497-IgG1) was conjugated to a photosensitizer (IRDye700DX) and used as photoimmunotherapy in vitro and in vivo in mice with a subcutaneous implant pre-colonized with biofilm of Staphylococcus aureus. A dose of 400 μg and 200 μg of antibody-photosensitizer conjugate 4497-IgG–IRDye700DXwas administered intravenously to two groups of 5 mice. In addition, multiple control groups (vancomycin treated, unconjugated IRDye700DX and IRDye700DX conjugated to a non-specific antibody) were used to verify anti-microbial effects. Results In vitro results of 4497-IgG-IRDye700DX on pre-colonized (biofilm) implants showed significant (p<0.01) colony-forming units (CFU) reduction at a concentration of 5 μg of the antibody-photosensitizer conjugate. In vivo, treatment with 4497-IgG-IRDye700DX showed no significant CFU reduction at the implant infection. However, tissue around the implant did show a significant CFU reduction with 400 μg 4497-IgG-IRDye700DX compared to control groups (p = 0.037). Conclusion This study demonstrated the antimicrobial potential of photoimmunotherapy for selectively eliminating S. aureus in vivo. However, using a solid implant instead of a catheter could result in an increased bactericidal effect of 4497-IgG-IRDye700DX and administration locally around an implant (per operative) could become valuable applications in patients that are difficult to treat with conventional methods. We conclude that photoimmunotherapy could be a potential additional therapy in the treatment of implant related infections, but requires further improvement.
KW - Animals
KW - Anti-Bacterial Agents/pharmacology
KW - Biofilms
KW - Humans
KW - Immunoglobulin G/pharmacology
KW - Mice
KW - Photosensitizing Agents/pharmacology
KW - Staphylococcal Infections/drug therapy
KW - Staphylococcus aureus
UR - http://www.scopus.com/inward/record.url?scp=85187324039&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0300069
DO - 10.1371/journal.pone.0300069
M3 - Article
C2 - 38457402
SN - 1932-6203
VL - 19
JO - PLoS ONE
JF - PLoS ONE
IS - 3 March
M1 - e0300069
ER -