Abstract
Core components of the N-glycosylation pathway are known, but the metabolic and post-translational mechanisms regulating this pathway in normal and disease states remain elusive. Using a multi-omic approach in zebrafish, we discovered a mechanism whereby O-GlcNAcylation directly impacts the expression and abundance of two rate-limiting proteins in the N-linked glycosylation pathway. We show in a model of an inherited glycosylation disorder PMM2-CDG, congenital disorders of glycosylation that phosphomannomutase deficiency is associated with increased levels of UDP-GlcNAc and protein O-GlcNAcylation. O-GlcNAc modification increases the transcript and protein abundance of both NgBR and Dpagt1 in pmm2m/m mutants. Modulating O-GlcNAc levels, NgBR abundance, or Dpagt1 activity exacerbated the cartilage phenotypes in pmm2 mutants, suggesting that O-GlcNAc-mediated increases in the N-glycosylation machinery are protective. These findings highlight nucleotide-sugar donors as metabolic sensors that regulate two spatially separated glycosylation pathways, demonstrating how their coordination is relevant to disease severity in the most common congenital disorder of glycosylation.
Original language | English |
---|---|
Article number | 114976 |
Journal | Cell Reports |
Volume | 43 |
Issue number | 11 |
DOIs | |
Publication status | Published - 26 Nov 2024 |
Externally published | Yes |
Keywords
- CDG
- CP: Molecular biology
- disease modifiers
- glycosylation
- O-GlcNAc
- sugar metabolism
- zebrafish