TY - JOUR
T1 - Novel non-invasive ECG imaging method based on the 12-lead ECG for reconstruction of ventricular activation
T2 - A proof-of-concept study
AU - Fruelund, Patricia Zerlang
AU - Van Dam, Peter M.
AU - Melgaard, Jacob
AU - Sommer, Anders
AU - Lundbye-Christensen, Søren
AU - Søgaard, Peter
AU - Zaremba, Tomas
AU - Graff, Claus
AU - Riahi, Sam
N1 - Publisher Copyright:
Copyright © 2023 Fruelund, Van Dam, Melgaard, Sommer, Lundbye-Christensen, Søgaard, Zaremba, Graff and Riahi.
PY - 2023/2/2
Y1 - 2023/2/2
N2 - Aim: Current non-invasive electrocardiographic imaging (ECGi) methods are often based on complex body surface potential mapping, limiting the clinical applicability. The aim of this pilot study was to evaluate the ability of a novel non-invasive ECGi method, based on the standard 12-lead ECG, to localize initial site of ventricular activation in right ventricular (RV) paced patients. Validation of the method was performed by comparing the ECGi reconstructed earliest site of activation against the true RV pacing site determined from cardiac computed tomography (CT). Methods: This was a retrospective study using data from 34 patients, previously implanted with a dual chamber pacemaker due to advanced atrioventricular block. True RV lead position was determined from analysis of a post-implant cardiac CT scan. The ECGi method was based on an inverse-ECG algorithm applying electrophysiological rules. The algorithm integrated information from an RV paced 12-lead ECG together with a CT-derived patient-specific heart-thorax geometric model to reconstruct a 3D electrical ventricular activation map. Results: The mean geodesic localization error (LE) between the ECGi reconstructed initial site of activation and the RV lead insertion site determined from CT was 13.9 ± 5.6 mm. The mean RV endocardial surface area was 146.0 ± 30.0 cm2 and the mean circular LE area was 7.0 ± 5.2 cm2 resulting in a relative LE of 5.0 ± 4.0%. Conclusion: We demonstrated a novel non-invasive ECGi method, based on the 12-lead ECG, that accurately localized the RV pacing site in relation to the ventricular anatomy.
AB - Aim: Current non-invasive electrocardiographic imaging (ECGi) methods are often based on complex body surface potential mapping, limiting the clinical applicability. The aim of this pilot study was to evaluate the ability of a novel non-invasive ECGi method, based on the standard 12-lead ECG, to localize initial site of ventricular activation in right ventricular (RV) paced patients. Validation of the method was performed by comparing the ECGi reconstructed earliest site of activation against the true RV pacing site determined from cardiac computed tomography (CT). Methods: This was a retrospective study using data from 34 patients, previously implanted with a dual chamber pacemaker due to advanced atrioventricular block. True RV lead position was determined from analysis of a post-implant cardiac CT scan. The ECGi method was based on an inverse-ECG algorithm applying electrophysiological rules. The algorithm integrated information from an RV paced 12-lead ECG together with a CT-derived patient-specific heart-thorax geometric model to reconstruct a 3D electrical ventricular activation map. Results: The mean geodesic localization error (LE) between the ECGi reconstructed initial site of activation and the RV lead insertion site determined from CT was 13.9 ± 5.6 mm. The mean RV endocardial surface area was 146.0 ± 30.0 cm2 and the mean circular LE area was 7.0 ± 5.2 cm2 resulting in a relative LE of 5.0 ± 4.0%. Conclusion: We demonstrated a novel non-invasive ECGi method, based on the 12-lead ECG, that accurately localized the RV pacing site in relation to the ventricular anatomy.
KW - 12-lead electrocardiogram
KW - cardiac pacing
KW - electrocardiography
KW - non-invasive imaging
KW - patient-specific modeling
KW - ventricular activation
UR - http://www.scopus.com/inward/record.url?scp=85148356030&partnerID=8YFLogxK
U2 - 10.3389/fcvm.2023.1087568
DO - 10.3389/fcvm.2023.1087568
M3 - Article
AN - SCOPUS:85148356030
SN - 2297-055X
VL - 10
JO - Frontiers in Cardiovascular Medicine
JF - Frontiers in Cardiovascular Medicine
M1 - 1087568
ER -