TY - JOUR
T1 - No need to detune transmitters in 32-channel receiver arrays at 7 T
AU - Gosselink, Mark
AU - Hoogduin, Hans
AU - Froeling, Martijn
AU - Klomp, Dennis W J
N1 - Publisher Copyright:
© 2021 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
Publisher Copyright:
© 2021 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd
PY - 2021/6
Y1 - 2021/6
N2 - Ultrahigh field magnetic resonance imaging facilitates high spatiotemporal resolution that benefits from increasing the number of receiver elements. Because high-density receiver arrays have a relatively small element size compared with the transmitter, a side effect is that such setups cause low flux coupling between the transmitter and receiver. Moreover, when transmitters are designed in a multitransmit configuration, their relative size is much smaller than the sample, reducing coupling to the sample and thereby potentially also the coupling to the receivers. Transmitters are traditionally detuned during reception. In this study, we investigate, for a 32-channel receiver head array at 7 T, if transmitter detuning of a quadrature birdcage or of an eight-channel transmit coil can be omitted without substantially sacrificing signal-to-noise ratio (SNR). The transmit elements are operated once with and once without detuning and, in the latter, the received signals are either merged with the array or excluded for image reconstruction. For each of the three measurements, SNR and 1/g-factor maps are investigated. The tuning of the quadrature and eight-channel transmit coils during signal reception introduced a 10.1% and 6.5% penalty in SNR, respectively, relative to the SNR received with detuned transmitters. When also incorporating the signal of the transmit coils, the SNR was regained to 98.5% or 101.4% for the quadrature and eight-channel coil, respectively, relative to the detuned transmitters, while the 1/g-factor maps improved slightly. For the 32-channel receive coil used the SNR penalty can become negligible when omitting detuning of the transmit coils. This not only simplifies transmit coil designs, potentially increasing their efficiency, but also enables the transmitters to be used as receivers in parallel to the receiver array, thus increasing parallel imaging performance.
AB - Ultrahigh field magnetic resonance imaging facilitates high spatiotemporal resolution that benefits from increasing the number of receiver elements. Because high-density receiver arrays have a relatively small element size compared with the transmitter, a side effect is that such setups cause low flux coupling between the transmitter and receiver. Moreover, when transmitters are designed in a multitransmit configuration, their relative size is much smaller than the sample, reducing coupling to the sample and thereby potentially also the coupling to the receivers. Transmitters are traditionally detuned during reception. In this study, we investigate, for a 32-channel receiver head array at 7 T, if transmitter detuning of a quadrature birdcage or of an eight-channel transmit coil can be omitted without substantially sacrificing signal-to-noise ratio (SNR). The transmit elements are operated once with and once without detuning and, in the latter, the received signals are either merged with the array or excluded for image reconstruction. For each of the three measurements, SNR and 1/g-factor maps are investigated. The tuning of the quadrature and eight-channel transmit coils during signal reception introduced a 10.1% and 6.5% penalty in SNR, respectively, relative to the SNR received with detuned transmitters. When also incorporating the signal of the transmit coils, the SNR was regained to 98.5% or 101.4% for the quadrature and eight-channel coil, respectively, relative to the detuned transmitters, while the 1/g-factor maps improved slightly. For the 32-channel receive coil used the SNR penalty can become negligible when omitting detuning of the transmit coils. This not only simplifies transmit coil designs, potentially increasing their efficiency, but also enables the transmitters to be used as receivers in parallel to the receiver array, thus increasing parallel imaging performance.
KW - array coils
KW - parallel transmission
KW - RF transmit coils
UR - http://www.scopus.com/inward/record.url?scp=85100819535&partnerID=8YFLogxK
U2 - 10.1002/nbm.4491
DO - 10.1002/nbm.4491
M3 - Article
C2 - 33567471
SN - 0952-3480
VL - 34
JO - NMR in Biomedicine
JF - NMR in Biomedicine
IS - 6
M1 - e4491
ER -