TY - JOUR
T1 - Nationwide seroprevalence of SARS-CoV-2 and identification of risk factors in the general population of the Netherlands during the first epidemic wave
AU - Vos, Eric R A
AU - den Hartog, Gerco
AU - Schepp, Rutger M
AU - Kaaijk, Patricia
AU - van Vliet, Jeffrey
AU - Helm, Kina
AU - Smits, Gaby
AU - Wijmenga-Monsuur, Alienke
AU - Verberk, Janneke D M
AU - van Boven, Michiel
AU - van Binnendijk, Rob S
AU - de Melker, Hester E
AU - Mollema, Liesbeth
AU - van der Klis, Fiona R M
N1 - Funding Information:
Acknowledgements First of all, we gratefully acknowledge the participants of the PICO-study. Secondly, this study would not have been possible without the instrumental contribution of colleagues from the National Institute of Public Health and Environment (RIVM), Bilthoven, the Netherlands, more specially the department of Immunology of Infectious Diseases and Vaccines, regarding logistics and/or laboratory analyses (Marjan Bogaard-van Maurik, Annemarie Buisman, Pieter van Gageldonk, Hinke ten Hulscher-van Overbeek, Petra Jochemsen, Deborah Kleijne, Jessica Loch, Marjan Kuijer, Milou Ohm, Hella Pasmans, Lia de Rond, Debbie van Rooijen, Liza Tymchenko, Esther van Woudenbergh, and Mary-lene de Zeeuw-Brouwer), the Epidemiology and Surveillance department concerning logistics (Francoise van Heiningen, Alies van Lier, Jeanet Kemmeren, Joske Hoes, Maarten Immink, Marit Middeldorp, Christiaan Oostdijk, Ilse Schinkel-Gordijn, Yolanda van Weert, and Anneke Westerhof), methodological insights (Hendriek Boshuizen, Susan Hahné, Scott McDonald, Rianne van Gageldonk-Lafeber, Jan van de Kassteele, and Maarten Schipper) and manuscript reviewing (Susan van den Hof, and Don Klinkenberg), department of IT and Communication for help with the invitations (Luppo de Vries, Daphne Gijselaar, and Maaike Mathu), student interns for additional support (Stijn Andeweg for creating online supplemental figures 1A and 1B; Janine Wolf, Natasha Kaagman, and Demi Wagenaar for logistics; and Lisette van Cooten for data entry of paper questionnaires), and Sidekick-IT, Breda, the Netherlands, regarding data flow (Tim de Hoog). This study was funded by the ministry of Health, Welfare and Sports (VWS), the Netherlands.
Publisher Copyright:
© Authors 2021
PY - 2021/6/1
Y1 - 2021/6/1
N2 - Background We aimed to detect SARS-CoV-2 serum antibodies in the general population of the Netherlands and identify risk factors for seropositivity amidst the first COVID-19 epidemic wave. Methods Participants (n=3207, aged 2-90 years), enrolled from a previously established nationwide serosurveillance study, provided a self-collected fingerstick blood sample and completed a questionnaire (median inclusion date 3 April 2020). IgG antibodies targeted against the spike S1-protein of SARS-CoV-2 were quantified using a validated multiplex-immunoassay. Seroprevalence was estimated controlling for survey design, individual pre-pandemic concentration, and test performance. Random-effects logistic regression identified risk factors for seropositivity. Results Overall seroprevalence in the Netherlands was 2.8% (95% CI 2.1 to 3.7), with no differences between sexes or ethnic background, and regionally ranging between 1.3 and 4.0%. Estimates were highest among 18-39 year-olds (4.9%), and lowest in children 2-17 years (1.7%). Multivariable analysis revealed that persons taking immunosuppressants and those from the Orthodox-Reformed Protestant community had over four times higher odds of being seropositive compared to others. Anosmia/ageusia was the most discriminative symptom between seropositive (53%) and seronegative persons (4%, p<0.0001). Antibody concentrations in seropositive persons were significantly higher in those with fever or dyspnoea in contrast to those without (p=0.01 and p=0.04, respectively). Conclusions In the midst of the first epidemic wave, 2.8% of the Dutch population was estimated to be infected with SARS-CoV-2, that is, 30 times higher than reported. This study identified independent groups with increased odds for seropositivity that may require specific surveillance measures to guide future protective interventions internationally, including vaccination once available.
AB - Background We aimed to detect SARS-CoV-2 serum antibodies in the general population of the Netherlands and identify risk factors for seropositivity amidst the first COVID-19 epidemic wave. Methods Participants (n=3207, aged 2-90 years), enrolled from a previously established nationwide serosurveillance study, provided a self-collected fingerstick blood sample and completed a questionnaire (median inclusion date 3 April 2020). IgG antibodies targeted against the spike S1-protein of SARS-CoV-2 were quantified using a validated multiplex-immunoassay. Seroprevalence was estimated controlling for survey design, individual pre-pandemic concentration, and test performance. Random-effects logistic regression identified risk factors for seropositivity. Results Overall seroprevalence in the Netherlands was 2.8% (95% CI 2.1 to 3.7), with no differences between sexes or ethnic background, and regionally ranging between 1.3 and 4.0%. Estimates were highest among 18-39 year-olds (4.9%), and lowest in children 2-17 years (1.7%). Multivariable analysis revealed that persons taking immunosuppressants and those from the Orthodox-Reformed Protestant community had over four times higher odds of being seropositive compared to others. Anosmia/ageusia was the most discriminative symptom between seropositive (53%) and seronegative persons (4%, p<0.0001). Antibody concentrations in seropositive persons were significantly higher in those with fever or dyspnoea in contrast to those without (p=0.01 and p=0.04, respectively). Conclusions In the midst of the first epidemic wave, 2.8% of the Dutch population was estimated to be infected with SARS-CoV-2, that is, 30 times higher than reported. This study identified independent groups with increased odds for seropositivity that may require specific surveillance measures to guide future protective interventions internationally, including vaccination once available.
KW - Epidemics
KW - Epidemiology
KW - Infection
KW - Public health
KW - Surveillance
UR - http://www.scopus.com/inward/record.url?scp=85096971061&partnerID=8YFLogxK
U2 - 10.1136/jech-2020-215678
DO - 10.1136/jech-2020-215678
M3 - Article
C2 - 33249407
SN - 0143-005X
VL - 75
SP - 489
EP - 495
JO - Journal of Epidemiology and Community Health
JF - Journal of Epidemiology and Community Health
IS - 6
ER -