Abstract
Shallow genome-wide cell-free DNA sequencing holds great promise for noninvasive cancer monitoring by providing reliable copy number alteration (CNA) and fragmentomic profiles. Single-nucleotide variations (SNVs) are, however, much harder to identify with low sequencing depth due to sequencing errors. Here, we present Nanopore Rolling Circle Amplification (RCA)-enhanced Consensus Sequencing (NanoRCS), which leverages RCA and consensus calling based on genome-wide long-read nanopore sequencing to enable simultaneous multimodal tumor fraction (TF) estimation through SNVs, CNAs, and fragmentomics. The efficacy of NanoRCS is tested on 18 cancer patient samples and seven healthy controls, demonstrating its ability to reliably detect TFs as low as 0.24%. In vitro experiments confirm that SNV measurements are essential for detecting TFs below 3%. NanoRCS provides an opportunity for cost-effective and rapid sample processing, which aligns well with clinical needs, particularly in settings where quick and accurate cancer monitoring is essential for personalized treatment strategies.
Original language | English |
---|---|
Pages (from-to) | 886-899 |
Number of pages | 14 |
Journal | Genome Research |
Volume | 35 |
Issue number | 4 |
Early online date | 13 Jan 2025 |
DOIs | |
Publication status | Published - 14 Apr 2025 |