Multimodal tract-based MRI metrics outperform whole brain markers in determining cognitive impact of small vessel disease-related brain injury

Alberto De Luca, Hugo Kuijf, Lieza Exalto, Michel Thiebaut de Schotten, Geert-Jan Biessels,

Research output: Contribution to journalArticleAcademicpeer-review

6 Downloads (Pure)

Abstract

In cerebral small vessel disease (cSVD), whole brain MRI markers of cSVD-related brain injury explain limited variance to support individualized prediction. Here, we investigate whether considering abnormalities in brain tracts by integrating multimodal metrics from diffusion MRI (dMRI) and structural MRI (sMRI), can better capture cognitive performance in cSVD patients than established approaches based on whole brain markers. We selected 102 patients (73.7 ± 10.2 years old, 59 males) with MRI-visible SVD lesions and both sMRI and dMRI. Conventional linear models using demographics and established whole brain markers were used as benchmark of predicting individual cognitive scores. Multi-modal metrics of 73 major brain tracts were derived from dMRI and sMRI, and used together with established markers as input of a feed-forward artificial neural network (ANN) to predict individual cognitive scores. A feature selection strategy was implemented to reduce the risk of overfitting. Prediction was performed with leave-one-out cross-validation and evaluated with the R 2 of the correlation between measured and predicted cognitive scores. Linear models predicted memory and processing speed with R 2  = 0.26 and R 2  = 0.38, respectively. With ANN, feature selection resulted in 13 tract-specific metrics and 5 whole brain markers for predicting processing speed, and 28 tract-specific metrics and 4 whole brain markers for predicting memory. Leave-one-out ANN prediction with the selected features achieved R 2  = 0.49 and R 2  = 0.40 for processing speed and memory, respectively. Our results show proof-of-concept that combining tract-specific multimodal MRI metrics can improve the prediction of cognitive performance in cSVD by leveraging tract-specific multi-modal metrics.

Original languageEnglish
Pages (from-to)2553-2567
Number of pages15
JournalBrain structure & function
Volume227
Issue number7
DOIs
Publication statusPublished - Sept 2022

Keywords

  • Cerebral small vessel disease
  • Cognition
  • Diffusion MRI
  • Fiber tractography
  • Neural network

Fingerprint

Dive into the research topics of 'Multimodal tract-based MRI metrics outperform whole brain markers in determining cognitive impact of small vessel disease-related brain injury'. Together they form a unique fingerprint.

Cite this