mRNA-LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells

Sanne Bevers, Sander A A Kooijmans, Elien Van de Velde, Martijn J W Evers, Sofie Seghers, Jerney J J M Gitz-Francois, Nicky C H van Kronenburg, Marcel H A M Fens, Enrico Mastrobattista, Lucie Hassler, Helena Sork, Taavi Lehto, Kariem E Ahmed, Samir El Andaloussi, Katja Fiedler, Karine Breckpot, Michael Maes, Diane Van Hoorick, Thierry Bastogne, Raymond M SchiffelersStefaan De Koker

Research output: Contribution to journalArticleAcademicpeer-review

10 Downloads (Pure)

Abstract

mRNA vaccines have recently proved to be highly effective against SARS-CoV-2. Key to their success is the lipid-based nanoparticle (LNP), which enables efficient mRNA expression and endows the vaccine with adjuvant properties that drive potent antibody responses. Effective cancer vaccines require long-lived, qualitative CD8 T cell responses instead of antibody responses. Systemic vaccination appears to be the most effective route, but necessitates adaptation of LNP composition to deliver mRNA to antigen-presenting cells. Using a design-of-experiments methodology, we tailored mRNA-LNP compositions to achieve high-magnitude tumor-specific CD8 T cell responses within a single round of optimization. Optimized LNP compositions resulted in enhanced mRNA uptake by multiple splenic immune cell populations. Type I interferon and phagocytes were found to be essential for the T cell response. Surprisingly, we also discovered a yet unidentified role of B cells in stimulating the vaccine-elicited CD8 T cell response. Optimized LNPs displayed a similar, spleen-centered biodistribution profile in non-human primates and did not trigger histopathological changes in liver and spleen, warranting their further assessment in clinical studies. Taken together, our study clarifies the relationship between nanoparticle composition and their T cell stimulatory capacity and provides novel insights into the underlying mechanisms of effective mRNA-LNP-based antitumor immunotherapy.

Original languageEnglish
Pages (from-to)3078-3094
Number of pages17
JournalMolecular Therapy
Volume30
Issue number9
Early online date11 Jul 2022
DOIs
Publication statusPublished - 7 Sept 2022

Keywords

  • cancer
  • design-of-experiments methodology
  • extrahepatic delivery
  • immunotherapy
  • LNP
  • mRNA
  • vaccination

Fingerprint

Dive into the research topics of 'mRNA-LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells'. Together they form a unique fingerprint.

Cite this