TY - JOUR
T1 - Modeling ventricular repolarization gradients in normal cases using the equivalent dipole layer
AU - Kloosterman, M
AU - Boonstra, M J
AU - van der Schaaf, I
AU - Loh, P
AU - van Dam, P M
N1 - Publisher Copyright:
© 2023 The Authors
PY - 2024/1/1
Y1 - 2024/1/1
N2 - Background Electrical activity underlying the T-wave is less well understood than the QRS-complex. This study investigated the relationship between normal T-wave morphology and the underlying ventricular repolarization gradients using the equivalent dipole layer (EDL). Methods Body-surface-potential-maps (BSPM, 67‑leads) were obtained in nine normal cases. Subject specific MRI-based anatomical heart/torso-models with electrode positions were created. The boundary element method was used to account for the volume conductor effects. To simulate the measured T-waves, the EDL was used to apply different ventricular repolarization gradients: a) transmural, b) interventricular c) apico-basal and d) all three gradients (a-c) combined. The combined gradient (d) was optimized using an inverse procedure (Levenberg-Marquardt). Correspondence between simulated and measured T-waves was assessed using correlation coefficient (CC) and relative difference (RD). Results Realistic T-waves were simulated if repolarization times of: (a) the epicardium were smaller than the endocardium; (b) the left ventricle were smaller than the right ventricle and (c) the apex increased towards the base. The apico-basal gradient resulted in the highest correspondence between measured and simulated T-waves (CC = 0.84(0.81-0.91);RD = 0.68(0.60-0.71)) compared to a transmural gradient (CC = 0.77(0.71-0.80);RD = 1.46(0.82-1.75)) and an interventricular gradient (CC = 0.71(0.67-0.80);RD = 0.85(0.75-0.87)). All three gradients combined further improved the correspondence between measured and simulated T-waves (CC = 0.83(0.82-0.89);RD = 0.60(0.51-0.63)), especially after optimization (CC = 0.96(0.94-0.98);RD = 0.27(0.22-0.34)). Conclusion The application of all repolarization gradients combined resulted in the largest agreement between simulated and measured T-waves, followed by the apico-basal repolarization gradient. With these findings, we will optimize our EDL-based inverse procedure to assess repolarization abnormalities.
AB - Background Electrical activity underlying the T-wave is less well understood than the QRS-complex. This study investigated the relationship between normal T-wave morphology and the underlying ventricular repolarization gradients using the equivalent dipole layer (EDL). Methods Body-surface-potential-maps (BSPM, 67‑leads) were obtained in nine normal cases. Subject specific MRI-based anatomical heart/torso-models with electrode positions were created. The boundary element method was used to account for the volume conductor effects. To simulate the measured T-waves, the EDL was used to apply different ventricular repolarization gradients: a) transmural, b) interventricular c) apico-basal and d) all three gradients (a-c) combined. The combined gradient (d) was optimized using an inverse procedure (Levenberg-Marquardt). Correspondence between simulated and measured T-waves was assessed using correlation coefficient (CC) and relative difference (RD). Results Realistic T-waves were simulated if repolarization times of: (a) the epicardium were smaller than the endocardium; (b) the left ventricle were smaller than the right ventricle and (c) the apex increased towards the base. The apico-basal gradient resulted in the highest correspondence between measured and simulated T-waves (CC = 0.84(0.81-0.91);RD = 0.68(0.60-0.71)) compared to a transmural gradient (CC = 0.77(0.71-0.80);RD = 1.46(0.82-1.75)) and an interventricular gradient (CC = 0.71(0.67-0.80);RD = 0.85(0.75-0.87)). All three gradients combined further improved the correspondence between measured and simulated T-waves (CC = 0.83(0.82-0.89);RD = 0.60(0.51-0.63)), especially after optimization (CC = 0.96(0.94-0.98);RD = 0.27(0.22-0.34)). Conclusion The application of all repolarization gradients combined resulted in the largest agreement between simulated and measured T-waves, followed by the apico-basal repolarization gradient. With these findings, we will optimize our EDL-based inverse procedure to assess repolarization abnormalities.
KW - Body surface potential mapping
KW - Electrocardiographic imaging
KW - Equivalent dipole layer
KW - Ventricular repolarization gradients
UR - http://www.scopus.com/inward/record.url?scp=85177815866&partnerID=8YFLogxK
U2 - 10.1016/j.jelectrocard.2023.11.003
DO - 10.1016/j.jelectrocard.2023.11.003
M3 - Article
C2 - 38000150
SN - 0022-0736
VL - 82
SP - 27
EP - 33
JO - Journal of Electrocardiology
JF - Journal of Electrocardiology
ER -