Microtubule nucleation from the fibrous corona by LIC1-pericentrin promotes chromosome congression

Jingchao Wu, Ainhoa Larreategui-Aparicio, Maaike L.A. Lambers, Dani L. Bodor, Sjoerd J. Klaasen, Eveline Tollenaar, Marta de Ruijter-Villani, Geert J.P.L. Kops*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

4 Downloads (Pure)

Abstract

Error-free chromosome segregation in mitosis and meiosis relies on the assembly of a microtubule-based spindle that interacts with kinetochores to guide chromosomes to the cell equator before segregation in anaphase. Microtubules sprout from nucleation sites such as centrosomes, but kinetochores can also promote microtubule formation. It is unclear, however, how kinetochore-derived microtubules are generated and what their role is in chromosome segregation. Here, we show that the transient outer-kinetochore meshwork known as the fibrous corona serves as an autonomous microtubule nucleation platform. The fibrous corona is essential for the nucleation of kinetochore-derived microtubules, and when dissociated from the core kinetochore, it retains microtubule nucleation capacity. Nucleation relies on a fibrous-corona-bound pool of the LIC1 subunit of the dynein motor complex, which interacts with the γ-tubulin-tethering protein pericentrin (PCNT). PCNT is essential for microtubule nucleation from fibrous coronas, and in centrosome-depleted cells, where nearly all mitotic nucleation occurs at fibrous coronas, chromosome congression is fully dependent on PCNT. We further show that chromosomes in bovine oocytes, which naturally lack centrosomes, have highly expanded fibrous coronas that drive chromosome-derived microtubule nucleation. Preventing fibrous corona expansion in these cells impairs chromosome congression and causes spindle assembly defects. Our results show that fibrous coronas are autonomous microtubule-organizing centers that are important for spindle assembly, which may be especially relevant in acentrosomal cells such as oocytes.

Original languageEnglish
Pages (from-to)912-925.e6
JournalCurrent Biology
Volume33
Issue number5
DOIs
Publication statusPublished - 13 Mar 2023

Keywords

  • cell division
  • chromosome
  • fibrous corona
  • kinetochore
  • meiosis
  • microtubule
  • microtubule nucleation
  • mitosis
  • oocyte
  • pericentrin

Fingerprint

Dive into the research topics of 'Microtubule nucleation from the fibrous corona by LIC1-pericentrin promotes chromosome congression'. Together they form a unique fingerprint.

Cite this