TY - JOUR
T1 - Microstructured silk fiber scaffolds with enhanced stretchability
AU - Viola, Martina
AU - Cedillo-Servin, Gerardo
AU - van Genderen, Anne Metje
AU - Imhof, Isabelle
AU - Vena, Paula
AU - Mihajlovic, Marko
AU - Piluso, Susanna
AU - Malda, Jos
AU - Vermonden, Tina
AU - Castilho, Miguel
N1 - Publisher Copyright:
© 2024 The Royal Society of Chemistry.
PY - 2024/10/8
Y1 - 2024/10/8
N2 - Despite extensive research, current methods for creating three-dimensional (3D) silk fibroin (SF) scaffolds lack control over molecular rearrangement, particularly in the formation of β-sheet nanocrystals that severely embrittle SF, as well as hierarchical fiber organization at both micro- and macroscale. Here, we introduce a fabrication process based on electrowriting of aqueous SF solutions followed by post-processing using an aqueous solution of sodium dihydrogen phosphate (NaH2PO4). This approach enables gelation of SF chains via controlled β-sheet formation and partial conservation of compliant random coil structures. Moreover, this process allows for precise architecture control in microfiber scaffolds, enabling the creation of 3D flat and tubular macro-geometries with square-based and crosshatch microarchitectures, featuring inter-fiber distances of 400 μm and ∼97% open porosity. Remarkably, the crosslinked printed structures demonstrated a balanced coexistence of β-sheet and random coil conformations, which is uncommon for organic solvent-based crosslinking methods. This synergy of printing and post-processing yielded stable scaffolds with high compliance (modulus = 0.5-15 MPa) and the ability to support elastic cyclic loading up to 20% deformation. Furthermore, the printed constructs supported in vitro adherence and growth of human renal epithelial and endothelial cells with viability above 95%. These cells formed homogeneous monolayers that aligned with the fiber direction and deposited type-IV collagen as a specific marker of healthy extracellular matrix, indicating that both cell types attach, proliferate, and organize their own microenvironment within the SF scaffolds. These findings represent a significant development in fabricating organized stable SF scaffolds with unique microfiber structures and mechanical and biological properties that make them highly promising for tissue engineering applications.
AB - Despite extensive research, current methods for creating three-dimensional (3D) silk fibroin (SF) scaffolds lack control over molecular rearrangement, particularly in the formation of β-sheet nanocrystals that severely embrittle SF, as well as hierarchical fiber organization at both micro- and macroscale. Here, we introduce a fabrication process based on electrowriting of aqueous SF solutions followed by post-processing using an aqueous solution of sodium dihydrogen phosphate (NaH2PO4). This approach enables gelation of SF chains via controlled β-sheet formation and partial conservation of compliant random coil structures. Moreover, this process allows for precise architecture control in microfiber scaffolds, enabling the creation of 3D flat and tubular macro-geometries with square-based and crosshatch microarchitectures, featuring inter-fiber distances of 400 μm and ∼97% open porosity. Remarkably, the crosslinked printed structures demonstrated a balanced coexistence of β-sheet and random coil conformations, which is uncommon for organic solvent-based crosslinking methods. This synergy of printing and post-processing yielded stable scaffolds with high compliance (modulus = 0.5-15 MPa) and the ability to support elastic cyclic loading up to 20% deformation. Furthermore, the printed constructs supported in vitro adherence and growth of human renal epithelial and endothelial cells with viability above 95%. These cells formed homogeneous monolayers that aligned with the fiber direction and deposited type-IV collagen as a specific marker of healthy extracellular matrix, indicating that both cell types attach, proliferate, and organize their own microenvironment within the SF scaffolds. These findings represent a significant development in fabricating organized stable SF scaffolds with unique microfiber structures and mechanical and biological properties that make them highly promising for tissue engineering applications.
UR - http://www.scopus.com/inward/record.url?scp=85203152044&partnerID=8YFLogxK
U2 - 10.1039/d4bm00624k
DO - 10.1039/d4bm00624k
M3 - Article
C2 - 39229829
AN - SCOPUS:85203152044
SN - 2047-4830
VL - 12
SP - 5225
EP - 5238
JO - Biomaterials science
JF - Biomaterials science
IS - 20
ER -