Abstract
Background- Myocardial infarction leads to cardiac remodeling and development of heart failure. Insufficient myocardial capillary density after myocardial infarction has been identified as a critical event in this process, although the underlying mechanisms of cardiac angiogenesis are mechanistically not well understood. Methods and Results- Here, we show that the small noncoding RNA microRNA-24 (miR-24) is enriched in cardiac endothelial cells and considerably upregulated after cardiac ischemia. MiR-24 induces endothelial cell apoptosis, abolishes endothelial capillary network formation on Matrigel, and inhibits cell sprouting from endothelial spheroids. These effects are mediated through targeting of the endothelium-enriched transcription factor GATA2 and the p21-activated kinase PAK4, which were identified by bioinformatic predictions and validated by luciferase gene reporter assays. Respective downstream signaling cascades involving phosphorylated BAD (Bcl-XL/Bcl-2-associated death promoter) and Sirtuin1 were identified by transcriptome, protein arrays, and chromatin immunoprecipitation analyses. Overexpression of miR-24 or silencing of its targets significantly impaired angiogenesis in zebrafish embryos. Blocking of endothelial miR-24 limited myocardial infarct size of mice via prevention of endothelial apoptosis and enhancement of vascularity, which led to preserved cardiac function and survival. Conclusions- Our findings indicate that miR-24 acts as a critical regulator of endothelial cell apoptosis and angiogenesis and is suitable for therapeutic intervention in the setting of ischemic heart disease.
Translated title of the contribution | MicroRNA-24 Regulates Vascularity After Myocardial Infarction. |
---|---|
Original language | Undefined/Unknown |
Pages (from-to) | 720-30 |
Number of pages | 11 |
Journal | Circulation |
Volume | 124 |
Issue number | 6 |
Publication status | Published - 2011 |