TY - JOUR
T1 - Microbiota modulate immune cell populations and drive dynamic structural changes in gut-associated lymphoid tissue
AU - Jan, Pačes
AU - Nikola, Malinská
AU - Liliana, Tušková
AU - Karolina, Knížková
AU - Valéria, Grobárová
AU - Zdeněk, Zadražil
AU - Tomáš, Hudcovic
AU - Anna, Michl
AU - Dagmar, Šrůtková
AU - Martin, Schwarzer
AU - Marianne, Boes
AU - Jan, Černý
N1 - Publisher Copyright:
© 2025 Charles University, Faculty of Science. Published with license by Taylor & Francis Group, LLC.
PY - 2025/12
Y1 - 2025/12
N2 - Inbred mouse strains provide phenotypic homogeneity between individual mice. However, stochastic morphogenetic events combined with epigenetic changes due to exposure to environmental factors and ontogenic experience result in variability among mice with virtually identical genotypes, reducing the reproducibility of experimental mouse models. Here we used microscopic and cytometric techniques to identify individual patterns in gut-associated lymphoid tissue (GALT) that are induced by exposure to microbiota. By comparing germ-free (GF), conventional (CV) and gnotobiotic mice colonized with a defined minimal mouse microbiota (oMM12) MHC II-EGFP knock-in mice we quantified antigen-presenting cells (APCs) in the lamina propria, cryptopatches (CP), isolated lymphoid follicles (ILFs), Peyer's patches (PPs) and specific sections of the mesenteric lymphoid complex. We found that GF mice had a significantly larger outer intestinal surface area compared to CV and oMM12-colonized mice, which partially compensated for their lower density of the villi in the distal ileum. GF mice also contained fewer APCs than oMM12 mice in the Iamina propria of the villi and had a significantly smaller volume of the solitary intestinal lymphoid tissue (SILT). In both GF and oMM12 mice, PP follicles were significantly smaller compared to CV mice, although number was similar. Concomitantly, the number of pDCs in PPs was significantly lower in GF mice than in CV mice. Moreover, the cecal patch was dispersed into small units in GF mice whereas it was compact in CV mice. Taken together, we here provide further evidence that microbiota regulates SILT differentiation, the size and morphology of PPs, the cellular composition of mesenteric lymph nodes (MLNs) and the morphology of cecal patch. As such, microbiota directly affect not only the functional configuration of the immune system but also the differentiation of lymphoid structures. These findings highlight how standardized microbiota, such as oMM12, can promote reproducibility in animal studies by enabling microbiologically controlled experiments across laboratories.
AB - Inbred mouse strains provide phenotypic homogeneity between individual mice. However, stochastic morphogenetic events combined with epigenetic changes due to exposure to environmental factors and ontogenic experience result in variability among mice with virtually identical genotypes, reducing the reproducibility of experimental mouse models. Here we used microscopic and cytometric techniques to identify individual patterns in gut-associated lymphoid tissue (GALT) that are induced by exposure to microbiota. By comparing germ-free (GF), conventional (CV) and gnotobiotic mice colonized with a defined minimal mouse microbiota (oMM12) MHC II-EGFP knock-in mice we quantified antigen-presenting cells (APCs) in the lamina propria, cryptopatches (CP), isolated lymphoid follicles (ILFs), Peyer's patches (PPs) and specific sections of the mesenteric lymphoid complex. We found that GF mice had a significantly larger outer intestinal surface area compared to CV and oMM12-colonized mice, which partially compensated for their lower density of the villi in the distal ileum. GF mice also contained fewer APCs than oMM12 mice in the Iamina propria of the villi and had a significantly smaller volume of the solitary intestinal lymphoid tissue (SILT). In both GF and oMM12 mice, PP follicles were significantly smaller compared to CV mice, although number was similar. Concomitantly, the number of pDCs in PPs was significantly lower in GF mice than in CV mice. Moreover, the cecal patch was dispersed into small units in GF mice whereas it was compact in CV mice. Taken together, we here provide further evidence that microbiota regulates SILT differentiation, the size and morphology of PPs, the cellular composition of mesenteric lymph nodes (MLNs) and the morphology of cecal patch. As such, microbiota directly affect not only the functional configuration of the immune system but also the differentiation of lymphoid structures. These findings highlight how standardized microbiota, such as oMM12, can promote reproducibility in animal studies by enabling microbiologically controlled experiments across laboratories.
U2 - 10.1080/19490976.2025.2543908
DO - 10.1080/19490976.2025.2543908
M3 - Article
C2 - 40802565
SN - 1949-0976
VL - 17
JO - Gut Microbes
JF - Gut Microbes
IS - 1
M1 - 2543908
ER -