TY - JOUR
T1 - MHCII expression on gut macrophages supports T cell homeostasis and is regulated by microbiota and ontogeny
AU - Guillaume, Joël
AU - Leufgen, Andrea
AU - Hager, Fabian T.
AU - Pabst, Oliver
AU - Cerovic, Vuk
N1 - Publisher Copyright:
© 2023, The Author(s).
PY - 2023/12
Y1 - 2023/12
N2 - Macrophages are traditionally considered antigen-presenting cells. However, their ability to present antigen and the factors regulating macrophage MHCII expression are poorly understood. Here, we demonstrate that MHCII expression on murine intestinal macrophages is differentially controlled by their residence in the small intestine (SI) or the colon, their ontogeny and the gut microbiota. Monocyte-derived macrophages are uniformly MHCIIhi, independently of the tissue of residence, microbial status or the age of the mouse, suggesting a common monocyte differentiation pathway. In contrast, MHCII expression on long-lived, prenatally-derived Tim4+ macrophages is low after birth but significantly increases at weaning in both SI and colon. Furthermore, MHCII expression on colonic Tim4+, but not monocyte-derived macrophages, is dependent on recognition of microbial stimuli, as MHCII expression is significantly downregulated in germ-free, antibiotic-treated and MyD88 deficient mice. To address the function of MHCII presentation by intestinal macrophages we established two models of macrophage-specific MHCII deficiency. We observed a significant reduction in the overall frequency and number of tissue-resident, but not newly arrived, SI CD4+ T cells in the absence of macrophage-expressed MHCII. Our data suggest that macrophage MHCII provides signals regulating gut CD4+ T cell maintenance with different requirements in the SI and colon.
AB - Macrophages are traditionally considered antigen-presenting cells. However, their ability to present antigen and the factors regulating macrophage MHCII expression are poorly understood. Here, we demonstrate that MHCII expression on murine intestinal macrophages is differentially controlled by their residence in the small intestine (SI) or the colon, their ontogeny and the gut microbiota. Monocyte-derived macrophages are uniformly MHCIIhi, independently of the tissue of residence, microbial status or the age of the mouse, suggesting a common monocyte differentiation pathway. In contrast, MHCII expression on long-lived, prenatally-derived Tim4+ macrophages is low after birth but significantly increases at weaning in both SI and colon. Furthermore, MHCII expression on colonic Tim4+, but not monocyte-derived macrophages, is dependent on recognition of microbial stimuli, as MHCII expression is significantly downregulated in germ-free, antibiotic-treated and MyD88 deficient mice. To address the function of MHCII presentation by intestinal macrophages we established two models of macrophage-specific MHCII deficiency. We observed a significant reduction in the overall frequency and number of tissue-resident, but not newly arrived, SI CD4+ T cells in the absence of macrophage-expressed MHCII. Our data suggest that macrophage MHCII provides signals regulating gut CD4+ T cell maintenance with different requirements in the SI and colon.
UR - http://www.scopus.com/inward/record.url?scp=85146937713&partnerID=8YFLogxK
U2 - 10.1038/s41598-023-28554-8
DO - 10.1038/s41598-023-28554-8
M3 - Article
C2 - 36707699
AN - SCOPUS:85146937713
SN - 2045-2322
VL - 13
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 1509
ER -