Metalloprotease-mediated cleavage of PlexinD1 and its sequestration to actin rods in the motoneuron disease spinal muscular atrophy (SMA)

Sebastian Rademacher, Bert M. Verheijen, Niko Hensel, Miriam Peters, Gamze Bora, Gudrun Brandes, Renata Vieira de Sá, Natascha Heidrich, Silke Fischer, Hella Brinkmann, W. Ludo van der Pol, Brunhilde Wirth, R. Jeroen Pasterkamp, Peter Claus*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Cytoskeletal rearrangement during axon growth is mediated by guidance receptors and their ligands which act either as repellent, attractant or both. Regulation of the actin cytoskeleton is disturbed in Spinal Muscular Atrophy (SMA), a devastating neurodegenerative disease affecting mainly motoneurons, but receptor-ligand interactions leading to the dysregulation causing SMA are poorly understood. In this study, we analysed the role of the guidance receptor PlexinD1 in SMA pathogenesis. We showed that PlexinD1 is cleaved by metalloproteases in SMA and that this cleavage switches its function from an attractant to repellent. Moreover, we found that the PlexinD1 cleavage product binds to actin rods, pathological aggregate-like structures which had so far been described for age-related neurodegenerative diseases. Our data suggest a novel disease mechanism for SMA involving formation of actin rods as a molecular sink for a cleaved PlexinD1 fragment leading to dysregulation of receptor signaling.

Original languageEnglish
Pages (from-to)3946-3959
Number of pages14
JournalHuman Molecular Genetics
Volume26
Issue number20
DOIs
Publication statusPublished - 15 Oct 2017

Fingerprint

Dive into the research topics of 'Metalloprotease-mediated cleavage of PlexinD1 and its sequestration to actin rods in the motoneuron disease spinal muscular atrophy (SMA)'. Together they form a unique fingerprint.

Cite this