TY - JOUR
T1 - Marathon running transiently depletes the myocardial lipid pool
AU - Aengevaeren, Vincent L
AU - Froeling, Martijn
AU - van den Berg-Faay, Sandra
AU - Hooijmans, Melissa T
AU - Monte, Jithsa R
AU - Strijkers, Gustav J
AU - Nederveen, Aart J
AU - Eijsvogels, Thijs M H
AU - Bakermans, Adrianus J
N1 - Funding Information:
VLA was financially supported by a grant from the Radboud Institute for Health Sciences. AJB is supported by a Veni grant from the Netherlands Organisation for Scientific Research (NWO; project number 91617155).
Publisher Copyright:
© 2020 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society
PY - 2020/9/1
Y1 - 2020/9/1
N2 - Lipids, stored as intracellular triacylglycerol droplets within the myocardium, serve as an important source of energy, particularly in times of prolonged increased energy expenditure. In only a few studies, the acute effects of exercise on such ectopic myocardial lipid storage were investigated. We studied the dynamic behavior of the myocardial lipid pool in response to completing the 2017 Amsterdam Marathon using proton magnetic resonance (MR) spectroscopy (1 H-MRS). We hypothesized that the prolonged increased myocardial energy demand of running a marathon could shift the balance of myocardial triacylglycerol turnover from triacylglycerol synthesis toward lipolysis and mitochondrial fatty acid β-oxidation, and decrease the myocardial lipid pool. We employed two 3 Tesla MR systems in parallel to noninvasively examine endurance-trained healthy men (n = 8; age 50.7 [50.1-52.7] y) at 1 week prior (baseline), <6 hr after finishing the marathon (post-marathon), and 2 weeks thereafter (recovery). Exercise intensity was 89 ± 6% of the age-predicted maximal heart rate, with a finish time of 3:56 [3:37-4:42] h:min. Myocardial lipid content was 0.66 [0.58-0.87]% of the total myocardial water signal at baseline, was lower post-marathon (0.47 [0.41-0.63]% of the total myocardial water signal), and had restored to 0.55 [0.49-0.83]% of the total myocardial water signal at recovery, representing a transient marathon running-induced depletion of 29 ± 24% (p = .04). The magnitude of this myocardial lipid pool depletion did not correlate with exercise intensity (r = -0.39; p = .39), nor with marathon finishing time (ρ = 0.57; p = .15). Our data show that prolonged high-intensity exercise can induce a transient depletion of the myocardial lipid pool, reinforcing the dynamic nature of ectopic triacylglycerol storage under real-life conditions of extreme endurance exercise.
AB - Lipids, stored as intracellular triacylglycerol droplets within the myocardium, serve as an important source of energy, particularly in times of prolonged increased energy expenditure. In only a few studies, the acute effects of exercise on such ectopic myocardial lipid storage were investigated. We studied the dynamic behavior of the myocardial lipid pool in response to completing the 2017 Amsterdam Marathon using proton magnetic resonance (MR) spectroscopy (1 H-MRS). We hypothesized that the prolonged increased myocardial energy demand of running a marathon could shift the balance of myocardial triacylglycerol turnover from triacylglycerol synthesis toward lipolysis and mitochondrial fatty acid β-oxidation, and decrease the myocardial lipid pool. We employed two 3 Tesla MR systems in parallel to noninvasively examine endurance-trained healthy men (n = 8; age 50.7 [50.1-52.7] y) at 1 week prior (baseline), <6 hr after finishing the marathon (post-marathon), and 2 weeks thereafter (recovery). Exercise intensity was 89 ± 6% of the age-predicted maximal heart rate, with a finish time of 3:56 [3:37-4:42] h:min. Myocardial lipid content was 0.66 [0.58-0.87]% of the total myocardial water signal at baseline, was lower post-marathon (0.47 [0.41-0.63]% of the total myocardial water signal), and had restored to 0.55 [0.49-0.83]% of the total myocardial water signal at recovery, representing a transient marathon running-induced depletion of 29 ± 24% (p = .04). The magnitude of this myocardial lipid pool depletion did not correlate with exercise intensity (r = -0.39; p = .39), nor with marathon finishing time (ρ = 0.57; p = .15). Our data show that prolonged high-intensity exercise can induce a transient depletion of the myocardial lipid pool, reinforcing the dynamic nature of ectopic triacylglycerol storage under real-life conditions of extreme endurance exercise.
KW - endurance exercise
KW - lipid metabolism
KW - myocardium
KW - proton magnetic resonance spectroscopy
KW - triglycerides
UR - http://www.scopus.com/inward/record.url?scp=85090106182&partnerID=8YFLogxK
U2 - 10.14814/phy2.14543
DO - 10.14814/phy2.14543
M3 - Article
C2 - 32869950
SN - 2051-817X
VL - 8
JO - Physiological Reports [E]
JF - Physiological Reports [E]
IS - 17
M1 - e14543
ER -