Abstract
This study aims at assessing approaches for generating high-resolution magnetic resonance imaging- (MRI-) based synthetic computed tomography (sCT) images suitable for orthopedic care using a deep learning model trained on low-resolution computed tomography (CT) data. To that end, paired MRI and CT data of three anatomical regions were used: high-resolution knee and ankle data, and low-resolution hip data. Four experiments were conducted to investigate the impact of low-resolution training CT data on sCT generation and to find ways to train models on low-resolution data while providing high-resolution sCT images. Experiments included resampling of the training data or augmentation of the low-resolution data with high-resolution data. Training sCT generation models using low-resolution CT data resulted in blurry sCT images. By resampling the MRI/CT pairs before the training, models generated sharper images, presumably through an increase in the MRI/CT mutual information. Alternatively, augmenting the low-resolution with high-resolution data improved sCT in terms of mean absolute error proportionally to the amount of high-resolution data. Overall, the morphological accuracy was satisfactory as assessed by an average intermodal distance between joint centers ranging from 0.7 to 1.2 mm and by an average intermodal root-mean-squared distances between bone surfaces under 0.7 mm. Average dice scores ranged from 79.8% to 87.3% for bony structures. To conclude, this paper proposed approaches to generate high-resolution sCT suitable for orthopedic care using low-resolution data. This can generalize the use of sCT for imaging the musculoskeletal system, paving the way for an MR-only imaging with simplified logistics and no ionizing radiation.
Original language | English |
---|---|
Pages (from-to) | 843-854 |
Number of pages | 12 |
Journal | Journal of Orthopaedic Research |
Volume | 42 |
Issue number | 4 |
Early online date | 8 Oct 2023 |
DOIs | |
Publication status | Published - Apr 2024 |
Keywords
- bone imaging
- deep learning
- lower limb
- magnetic resonance imaging
- synthetic computed tomography