Long-term Exposure to Ambient Air Pollution and Incidence of Brain Tumor: the European Study of Cohorts for Air Pollution Effects (ESCAPE)

Zorana Jovanovic Andersen, Marie Pedersen, Gudrun Weinmayr, Massimo Stafoggia, Claudia Galassi, Jeanette T. Jørgensen, Johan N Sommar, Bertil Forsberg, David Olsson, Bente Oftedal, Gunn Marit Aasvang, Per E. Schwarze, Andrei Pyko, Göran Pershagen, Michal Korek, Ulf de Faire, Claes Göran Östenson, Laura Fratiglioni, Kirsten Thorup Eriksen, Aslak H PoulsenAnne Tjønneland, Elvira Vaclavik Bräuner, Petra H Peeters, Bas Bueno-de-Mesquita, Andrea Jaensch, Gabriele Nagel, Alois Lang, Meng Wang, Ming Yi Tsai, Sara Grioni, Alessandro Marcon, Vittorio Krogh, Fulvio Ricceri, Carlotta Sacerdote, Enrica Migliore, Roel Vermeulen, Ranjeet S. Sokhi, Menno Keuken, Kees De Hoogh, Rob Beelen, Paolo Vineis, Giulia Cesaroni, Bert Brunekreef, Gerard Hoek, Ole Raaschou-Nielsen

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Background. Epidemiological evidence on the association between ambient air pollution and brain tumor risk is sparse and inconsistent. Methods. In 12 cohorts from 6 European countries, individual estimates of annual mean air pollution levels at the baseline residence were estimated by standardized land-use regression models developed within the ESCAPE and TRANSPHORM projects: Particulate matter (PM) ≥2.5,≥10, and 2.5-10 FÊm in diameter (PM2.5, PM10, and PMcoarse), PM2.5 absorbance, nitrogen oxides (NO 2 and NO x) and elemental composition of PM. We estimated cohort-specific associations of air pollutant concentrations and traffic intensity with total, malignant, and nonmalignant brain tumor, in separate Cox regression models, adjusting for risk factors, and pooled cohort-specific estimates using random-effects meta-analyses. Results. Of 282 194 subjects from 12 cohorts, 466 developed malignant brain tumors during 12 years of follow-up. Six of the cohorts also had data on nonmalignant brain tumor, where among 106 786 subjects, 366 developed brain tumor: 176 nonmalignant and 190 malignant. We found a positive, statistically nonsignificant association between malignant brain tumor and PM 2.5 absorbance (hazard ratio and 95% CI: 1.67; 0.89.3.14 per 10.5/m3), and weak positive or null associations with the other pollutants. Hazard ratio for PM 2.5 absorbance (1.01; 0.38.2.71 per 10 -5/m 3) and all other pollutants were lower for nonmalignant than for malignant brain tumors. Conclusion. We found suggestive evidence of an association between long-term exposure to PM 2.5 absorbance indicating traffic-related air pollution and malignant brain tumors, and no association with overall or nonmalignant brain tumors.

Original languageEnglish
Pages (from-to)420-432
Number of pages13
JournalNeuro-Oncology
Volume20
Issue number3
DOIs
Publication statusPublished - 19 Feb 2018

Keywords

  • air pollution
  • brain cancer
  • brain tumor
  • traffic

Fingerprint

Dive into the research topics of 'Long-term Exposure to Ambient Air Pollution and Incidence of Brain Tumor: the European Study of Cohorts for Air Pollution Effects (ESCAPE)'. Together they form a unique fingerprint.

Cite this