TY - JOUR
T1 - Intestinal region-specific Wnt signalling profiles reveal interrelation between cell identity and oncogenic pathway activity in cancer development
AU - Adam, Ronja S
AU - van Neerven, Sanne M
AU - Pleguezuelos-Manzano, Cayetano
AU - Simmini, Salvatore
AU - Léveillé, Nicolas
AU - de Groot, Nina E
AU - Holding, Andrew N
AU - Markowetz, Florian
AU - Vermeulen, Louis
N1 - Funding Information:
This work is supported by The New York Stem Cell Foundation and grants from KWF (UVA2014-7245), the Maurits en Anna de Kock Stichting (2015-2), Worldwide Cancer Research (14-1164), the Maag Lever Darm Stichting (MLDS-CDG 14-03), the European Research Council (ERG-StG 638193) and ZonMw (Vidi 016.156.308) to L.V. L.V. is a New York Stem Cell Foundation—Robertson Investigator. Parts of this work were funded by CRUK core Grant C14303/A17197 and A19274.
Funding Information:
L.V. received consulting/speaker fees from Genentech Inc., Bayer and Servier. L.V. received unrestricted research grants from Servier, Roche, Novartis.
Publisher Copyright:
© 2020, The Author(s).
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/12/3
Y1 - 2020/12/3
N2 - BACKGROUND: Cancer results from the accumulation of mutations leading to the acquisition of cancer promoting characteristics such as increased proliferation and resistance to cell death. In colorectal cancer, an early mutation leading to such features usually occurs in the APC or CTNNB1 genes, thereby activating Wnt signalling. However, substantial phenotypic differences between cancers originating within the same organ, such as molecular subtypes, are not fully reflected by differences in mutations. Indeed, the phenotype seems to result from a complex interplay between the cell-intrinsic features and the acquired mutations, which is difficult to disentangle when established tumours are studied.METHODS: We use a 3D in vitro organoid model to study the early phase of colorectal cancer development. From three different murine intestinal locations we grow organoids. These are transformed to resemble adenomas after Wnt activation through lentiviral transduction with a stable form of β-Catenin. The gene expression before and after Wnt activation is compared within each intestinal origin and across the three locations using RNA sequencing. To validate and generalize our findings, we use gene expression data from patients.RESULTS: In reaction to Wnt activation we observe downregulation of location specific genes and differentiation markers. A similar effect is seen in patient data, where genes with significant differential expression between the normal left and right colon are downregulated in the cancer samples. Furthermore, the signature of Wnt target genes differs between the three intestinal locations in the organoids. The location specific Wnt signatures are dominated by genes which have been lowly expressed in the tissue of origin, and are the targets of transcription factors that are activated following enhanced Wnt signalling.CONCLUSION: We observed that the region-specific cell identity has a substantial effect on the reaction to Wnt activation in a simple intestinal adenoma model. These findings provide a way forward in resolving the distinct biology between left- and right-sided human colon cancers with potential clinical relevance.
AB - BACKGROUND: Cancer results from the accumulation of mutations leading to the acquisition of cancer promoting characteristics such as increased proliferation and resistance to cell death. In colorectal cancer, an early mutation leading to such features usually occurs in the APC or CTNNB1 genes, thereby activating Wnt signalling. However, substantial phenotypic differences between cancers originating within the same organ, such as molecular subtypes, are not fully reflected by differences in mutations. Indeed, the phenotype seems to result from a complex interplay between the cell-intrinsic features and the acquired mutations, which is difficult to disentangle when established tumours are studied.METHODS: We use a 3D in vitro organoid model to study the early phase of colorectal cancer development. From three different murine intestinal locations we grow organoids. These are transformed to resemble adenomas after Wnt activation through lentiviral transduction with a stable form of β-Catenin. The gene expression before and after Wnt activation is compared within each intestinal origin and across the three locations using RNA sequencing. To validate and generalize our findings, we use gene expression data from patients.RESULTS: In reaction to Wnt activation we observe downregulation of location specific genes and differentiation markers. A similar effect is seen in patient data, where genes with significant differential expression between the normal left and right colon are downregulated in the cancer samples. Furthermore, the signature of Wnt target genes differs between the three intestinal locations in the organoids. The location specific Wnt signatures are dominated by genes which have been lowly expressed in the tissue of origin, and are the targets of transcription factors that are activated following enhanced Wnt signalling.CONCLUSION: We observed that the region-specific cell identity has a substantial effect on the reaction to Wnt activation in a simple intestinal adenoma model. These findings provide a way forward in resolving the distinct biology between left- and right-sided human colon cancers with potential clinical relevance.
KW - Cell of origin
KW - Intestinal cancer
KW - Wnt signalling
UR - http://www.scopus.com/inward/record.url?scp=85097014241&partnerID=8YFLogxK
U2 - 10.1186/s12935-020-01661-6
DO - 10.1186/s12935-020-01661-6
M3 - Article
C2 - 33292279
SN - 1475-2867
VL - 20
JO - Cancer cell international
JF - Cancer cell international
IS - 1
M1 - 578
ER -