TY - JOUR
T1 - Interpretation of CVD risk predictions in clinical practice
T2 - Mission impossible?
AU - Lagerweij, G. R.
AU - Moons, K. G.M.
AU - De Wit, G. A.
AU - Koffijberg, H.
N1 - Publisher Copyright:
© 2019 Lagerweij et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2019
Y1 - 2019
N2 - Background Cardiovascular disease (CVD) risk prediction models are often used to identify individuals at high risk of CVD events. Providing preventive treatment to these individuals may then reduce the CVD burden at population level. However, different prediction models may predict different (sets of) CVD outcomes which may lead to variation in selection of high risk individuals. Here, it is investigated if the use of different prediction models may actually lead to different treatment recommendations in clinical practice. Method The exact definition of and the event types included in the predicted outcomes of four widely used CVD risk prediction models (ATP-III, Framingham (FRS), Pooled Cohort Equations (PCE) and SCORE) was determined according to ICD-10 codes. The models were applied to a Dutch population cohort (n = 18,137) to predict the 10-year CVD risks. Finally, treatment recommendations, based on predicted risks and the treatment threshold associated with each model, were investigated and compared across models. Results Due to the different definitions of predicted outcomes, the predicted risks varied widely, with an average 10-year CVD risk of 1.2% (ATP), 5.2% (FRS), 1.9% (PCE), and 0.7% (SCORE). Given the variation in predicted risks and recommended treatment thresholds, preventive drugs would be prescribed for 0.2%, 14.9%, 4.4%, and 2.0% of all individuals when using ATP, FRS, PCE and SCORE, respectively. Conclusion Widely used CVD prediction models vary substantially regarding their outcomes and associated absolute risk estimates. Consequently, absolute predicted 10-year risks from different prediction models cannot be compared directly. Furthermore, treatment decisions often depend on which prediction model is applied and its recommended risk threshold, introducing unwanted practice variation into risk-based preventive strategies for CVD.
AB - Background Cardiovascular disease (CVD) risk prediction models are often used to identify individuals at high risk of CVD events. Providing preventive treatment to these individuals may then reduce the CVD burden at population level. However, different prediction models may predict different (sets of) CVD outcomes which may lead to variation in selection of high risk individuals. Here, it is investigated if the use of different prediction models may actually lead to different treatment recommendations in clinical practice. Method The exact definition of and the event types included in the predicted outcomes of four widely used CVD risk prediction models (ATP-III, Framingham (FRS), Pooled Cohort Equations (PCE) and SCORE) was determined according to ICD-10 codes. The models were applied to a Dutch population cohort (n = 18,137) to predict the 10-year CVD risks. Finally, treatment recommendations, based on predicted risks and the treatment threshold associated with each model, were investigated and compared across models. Results Due to the different definitions of predicted outcomes, the predicted risks varied widely, with an average 10-year CVD risk of 1.2% (ATP), 5.2% (FRS), 1.9% (PCE), and 0.7% (SCORE). Given the variation in predicted risks and recommended treatment thresholds, preventive drugs would be prescribed for 0.2%, 14.9%, 4.4%, and 2.0% of all individuals when using ATP, FRS, PCE and SCORE, respectively. Conclusion Widely used CVD prediction models vary substantially regarding their outcomes and associated absolute risk estimates. Consequently, absolute predicted 10-year risks from different prediction models cannot be compared directly. Furthermore, treatment decisions often depend on which prediction model is applied and its recommended risk threshold, introducing unwanted practice variation into risk-based preventive strategies for CVD.
UR - http://www.scopus.com/inward/record.url?scp=85059796718&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0209314
DO - 10.1371/journal.pone.0209314
M3 - Article
C2 - 30625177
SN - 1932-6203
VL - 14
JO - PLoS ONE
JF - PLoS ONE
IS - 1
M1 - e0209314
ER -