Abstract
Bone metastasis occurs for men with advanced prostate cancer which promotes osseous growth and destruction driven by alterations in osteoblast and osteoclast homeostasis. Patients can experience pain, spontaneous fractures and morbidity eroding overall quality of life. The complex and dynamic cellular interactions within the bone microenvironment limit current treatment options thus prostate to bone metastases remains incurable. This study uses voxel-based analysis of diffusion-weighted MRI and CT scans to simultaneously evaluate temporal changes in normal bone homeostasis along with prostate bone metatastsis to deliver an improved understanding of the spatiotemporal local microenvironment. Dynamic tumor-stromal interactions were assessed during treatment in mouse models along with a pilot prospective clinical trial with metastatic hormone sensitive and castration resistant prostate cancer patients with bone metastases. Longitudinal changes in tumor and bone imaging metrics during delivery of therapy were quantified. Studies revealed that voxel-based parametric response maps (PRM) of DW-MRI and CT scans could be used to quantify and spatially visualize dynamic changes during prostate tumor growth and in response to treatment thereby distinguishing patients with stable disease from those with progressive disease (p
Original language | English |
---|---|
Article number | 0123877 |
Number of pages | 18 |
Journal | PLoS ONE [E] |
Volume | 10 |
Issue number | 4 |
DOIs | |
Publication status | Published - 10 Apr 2015 |
Keywords
- FUNCTIONAL DIFFUSION MAP
- PARAMETRIC RESPONSE MAP
- BREAST-CANCER
- WEIGHTED MRI
- ANDROGEN INDEPENDENCE
- THERAPY RESPONSE
- DW-MRI
- BIOMARKER
- GLIOBLASTOMA
- PROGRESSION