Individualized 3D-printed applicators for magnetic resonance imaging-guided brachytherapy in nasal vestibule cancer

Mischa de Ridder*, Milena Smolić, Maarten Kastelijns, Samantha Kloosterman, Stefan van der Vegt, Johannes Rijken, Ina-Maria Schulz-Jurgenliemk, Homan Dehnad, PS Kroon-van Loon, Rien Moerland

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Background and purpose
Brachytherapy is treatment of choice for early stage nasal vestibule cancer. Over the years improvements were achieved by means of image guided target definition, interstitial implant techniques and also individual mold techniques. The aim of this study was to improve the technique of the implant so that the need for interstitial catheters can be limited by making use of patient individualized 3D-printed applicators.

Materials and Methods
In 19 patients 3D-printed applicators were used to deliver pulse dose rate (PDR) brachytherapy. All patients underwent computed tomography (CT) and magnetic resonance imaging (MRI). A pre-plan with tumor delineation and manually optimized catheter positions to achieve tumor coverage was made. Based on the pre-plan a 3D-printed applicator was manufactured. Dose was evaluated by several indices: Conformity Index, Healthy Tissues Conformity Index, Dose Homogeneity Index, Dose non-uniformity ratio, Conformal index and high dose (HD) index.

Results
A high target coverage was achieved, with a median V100%CTV of 99.1 % (range, 81.8–100 %) and median CI of 0.99 (range, 0.82–1.00), as well as a median V0.7GyGTV of 100 % (range, 93.0–100 %). The median HD was 0.39 (range, 0.20–0.83). Interstitial catheters were needed in 12 patients. None of the patients developed grade ≥ II toxicity within the median follow up of 18 months.

Conclusions
This study shows that using 3D-printed applicators limits the need for interstitial catheters and also limits the high doses in normal tissue.
Original languageEnglish
Article number100629
Number of pages5
JournalPhysics and Imaging in Radiation Oncology
Volume31
DOIs
Publication statusPublished - Jul 2024

Keywords

  • Brachytherapy
  • Nasal vestibule cancer
  • head and neck cancer 3D-print

Fingerprint

Dive into the research topics of 'Individualized 3D-printed applicators for magnetic resonance imaging-guided brachytherapy in nasal vestibule cancer'. Together they form a unique fingerprint.

Cite this